Consumer choice and interaction models

Piotr Magnuszewski Centre for Systems Solutions

Thresholds, Social Impact, and Utility

contesting frames for modeling human choice

Binary Choice Models

Opinion of i-th individual in the next time step σ_{z}^{t+1}

Opinion of i-th individual $- \sigma_i^t$ in the current time step

Choices: $\sigma_{i}^{t}, \sigma_{i}^{t+1} \in \{+1, -1\}$

$$\boldsymbol{\sigma}_{i}^{t+1} = D(\boldsymbol{\sigma}_{i}^{t+1}, \boldsymbol{\sigma}_{i}^{t}, h_{i}, \mathbf{N}_{i}, \boldsymbol{\varepsilon}_{i})$$

N_i Social environment of i-th individual

Decision Rule

- h_i Individual preferences
- \mathcal{E}_i Random factors affecting i-th individual

Threshold Models

Example: Granovetter model

Decision Rule:
$$\sigma_i^{t+1} = \begin{cases} +1 \text{ if } m > \sigma_i^{Th} \\ -1 \text{ if } m < \sigma_i^{Th} \end{cases}$$

 $m \equiv \frac{1}{N} \sum_j \sigma_j \quad \text{Mean Choice}$
 $N \quad \text{Number of Agents}$
 $\sigma_i^{Th} \quad \frac{1}{N} \sum_{j=1}^{N} \sigma_j \quad \frac{1}{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \sigma_j \quad \frac{1}{N} \sum_{j=1}^{N} \sigma_j$

Small differences in threshold distributions may lead to radically different aggregate outcomes.

cause i-th agent to choose +1

Threshold Models

Example: Granovetter model

Percentage of population "engaged" ("+1" choice)

Social Economics Models

Example: Brock-Durlauf Model

Utility Function

Decision Rule:
$$\sigma_i^{t+1} = \max_{\sigma_i^{t+1} \in \{+1,-1\}} U_i(\sigma_i^{t+1}, \mathbf{N}_i, \mathcal{E}_i)$$

 $1/\beta$ - "social temperature"

Decision Rule:

complete pairwise network

Multiple equilibria can emerge due to social interactions.

Average choice vs. strength and direction of individual preferences h

Global utility (deterministic part) strength and direction of individual preferences h

Ball & Cup Heuristic

- Valleys desirable and undesirable stability domains
 Domain set of system states fulfilling certain criteria
- Balls current system state
- Arrows changes in a system state (e.g. caused by disturbances)

Slow Response of Societies to New Problems: Causes and Costs Marten Scheffer, Frances Westley, and William Brock

Ecosystems (2003) 6: 493–502

Dynamic Social Psychology Models

Example: Nowak – Latane Model

Social Impact *I*

"Any influence on individual feelings, thoughts, or behavior that is exerted by the real, exerted or imagined presence or actions of others" (Latane' 81)

$$I = f(S \cdot d \cdot N)$$
Strength Immediacy Number

 $I \propto S$ $I \propto d^{-2}$ $I \propto \sqrt{N}$

Examples of social impact:

conformism, obedience, imitation, encouragement, stage fear

Dynamic Social Psychology Models

Nowak – Latane Model

Decision Rule:
$$\sigma_i^{t+1} = -\operatorname{sgn}(\sigma_i^t I_i)$$

$$I_{i} = \sqrt{\sum_{j} \frac{p_{j}}{d_{ij}^{2}} (1 - \sigma_{i}^{t} \sigma_{j}^{t})} - \sqrt{\sum_{j} \frac{s_{j}}{d_{ij}^{2}} (1 + \sigma_{i}^{t} \sigma_{j}^{t})}$$

Impact Function

Persuasiveness

- **d**_{ij} social distance
- p_j strength of persuasion from j-th agent

Supportiveness

 S_j – strength of support from j-th agent

if Persuasiveness > Supportiveness then Change Opinion

Equivalence of models with Utility Function and Impact Function

Generalized Model:

Generalized Utility Function

$$U_{i} = \frac{1}{2} \Big[(1 + \sigma_{i}^{t}) U_{i}^{\dagger} (\sigma_{i}^{t+1}, \sigma_{i}^{t} = +1, \mathbf{N}_{i}, \varepsilon_{i}) + (1 - \sigma_{i}^{t}) U_{i}^{-} (\sigma_{i}^{t+1}, \sigma_{i}^{t} = +1, \mathbf{N}_{i}, \varepsilon_{i}) \Big]$$

$$U_i^{\pm} = \boldsymbol{\sigma}_i' h_i^{\pm} \pm \boldsymbol{\sigma}_i' b_i^{\pm} \pm \boldsymbol{\sigma}_i' f^{\pm}(\mathbf{N}_i) + \boldsymbol{\varepsilon}_i^{\pm}(\boldsymbol{\sigma}_i')$$

Individual Self-Preference

Support (Agent's Inertia)

Social Random Influence: **Factors** Support / Persuade

Binary Choice for Heterogenous Agents

Rigorous Aggregation of Agent-based Models into System Dynamics Models

Binary Choice Models on Networks

Brock - Durlauf Model Small World Network

Dependence of hysteresis width on number of neighbors

Rewiring networks from Order to Randomness

- Models of binary choice, opinion and attitude dynamics correspond with statistical mechanics spin models.
- Models formulated using utility function are mathematically equivalent with models using impact function.
- Self-support enables to introduce inertia in agents' choices.
- Mean-field approximation (exact in complete-pairwise network) allows to find stationary states for wide class of models.
- Mean-field solutions provide reasonable approximation in network models for certain range of parameter values.

Maintenance of Drainage System in the Odra River Valley

Validation of Agent-Based Model through Role-Playing Simulation

Odra River Watershed

Problem:

Land Amelioration System is not maintained properly due to institutional changes.

Maintenance of Land Amelioration System in Odra River Valley

Data and Information Sources:

- Expert Judgment
- Workshops with Farmers
- Social Field Research (semistructured interviews with farmers in the study area)
- Role-Playing Game

00:02

farmer_4 2507 (Średnio zamożny rolnik) Stan majątkowy: 20 (Średnia) Reputacja: 69.1 1 Zeszłoroczne plony: Zeszłoroczny zysk: 447 1 Obecna działalność: Nie utrzymuje rowu Bardzo zły Stan rowu:

Spatial average water level distribution

Game results – qualitative – decision rules

Maintain:	 Reduce Waterlogging which Increases Yields and therefore Profits Increases Profits of other Farmers
Not Maintain:	- Unnecessary cost
Social	
Maintain:	 Reciprocity – "we will all be better of" Interconnectedness – "it is one system - all of us should maintain" Good relations with neighbours
Not Maintain:	 "Others do not maintain so do l" "It should be done by the State"

Technical

Maintain: Not Maintain:

- If wet year then maintain otherwise not
- Lack of technical abilities

Game results – quantitative Game 2

Significant correlations:

Previous choiceCritisism or Praise

- •Profit
- Neighbours' Choice
- •Others' Choice
- Weather

Used statistics:

- Goodman-Kruskal
- Chi2
- Fisher

Best logistic regression model:

$$\Pr(\sigma_i^{t+1} = 1 | \sigma_i^t) = \frac{1}{1 + \exp(-(d_0 + d_1 * \sigma_i^t))}$$

Game results – quantitative Game 3

Significant correlations:

- Previous choice
- Critisism or Praise
- Profit
- Neighbours' Choice
- Others' Choice
- Weather

Used statistics:

- Goodman-Kruskal
- Chi2
- Fisher

Best logistic regression model:

$$\Pr(\sigma_i^{t+1} = 1 | I) = \frac{1}{1 + \exp(-(d_0 + d_1 I))}$$

I – Sum of Others' Choices

Modeling Agents' Decisions Economic Factors

Adding economic factor G which influence Agent's choice X

$$\Pr(\sigma_i^{t+1} = 1 | I) = \frac{1}{1 + \exp(-(d_0 + d_1 I + d_2 G))}$$

G – Profit gains from channel maintenance

Combined Social-Ecological Model

Base Model Run

Decision paramters estimated from experimental data

	d0 =	0.8
	d1 =	1
	d2 =	0
	SocialThreshold =	0.73
	Production_Cost =	0.5
Maintenance_Cost = 0.3		
	Wetness =	0.66
	Losses0 =	0.5

Model Run Parameters:

High social influence

Model Run

Parameters: Include economic motivation – maintenace more profitable

0.9

0.85

MaintenanceAvg(mean) 0.20 0.22 0.22

0.6

0.55

0

0.2

0.1

0.3

r =	1	
Production_Cost =	0.5	
Maintenance_Cost = 0.3		
Losses0 =	0.5	
d0 =	0.5	
d1 =	1.5	
SocialThreshold =	0.73	
INIT_Maintenance = 1		
Wetness =	0.7	
d2 =	1	

INIT Maintenance

Avg Maintenance

0.8

0.9

0.08

0.06

Parameters:

Include economic motivation – maintenace less profitable

Social Economics Models

Example: Brock-Durlauf Model - Mean-Field Approximation

$$\Pr(\sigma_{i} = \sigma) = \Pr(U_{i}(\sigma) > U_{i}(-\sigma)) = \Pr(\varepsilon_{i}(-\sigma) - \varepsilon_{i}(\sigma) < 2\sigma z_{i})$$

$$z_{i} = h_{i} + \sum_{i \neq j} J_{ij}\sigma_{j}$$

$$\Pr(\sigma_{i} = \sigma) = \begin{cases} F_{\beta_{i}}^{\log}(2z_{i}) \text{ for } \sigma = +1 \\ 1 - F_{\beta_{i}}^{\log}(2z_{i}) \text{ for } \sigma = -1 \end{cases}$$

$$E(\sigma_{i}) = \Pr(\sigma_{i} = +1) - \Pr(\sigma_{i} = -1) = 2F_{\beta_{i}}^{\log}(2z_{i}) - 1$$

In a special case

deterministic private incentives are identical accross individuals distributions of random terms are identical accross individuals

each person cares only about the average choice of others

$$h_i = h$$
$$\beta_i = \beta$$

$$J_{ij} = \frac{J}{I-1} \qquad \forall j \neq i$$

expected average choice in a population is

$$m = \tanh(\beta h + \beta Jm)$$

This is mean field (Currie-Weiss) approximation for ferromagnetism.

Social Economics Models

Example: Brock-Durlauf Model – Mean-Field Approximation

Stationary States

Full circles corresponds to stable stationary states and open circles to unstable stationary states.

$$m = \tanh(\beta h + \beta Jm)$$

Binary Choice Models

Mean Field Approximation – Stationary States - Potential

Minima of the potential correspond with stable fixed points, maxima – unstable fixed points

Dynamic Social Psychology Models Holyst - Kacperski Model

1

Decision Rule:

e:

$$\sigma_i = \begin{cases} \sigma_i \text{ with probability } \frac{1}{1 + \exp(\beta I_i)} \\ -\sigma_i \text{ with probability } \frac{1}{1 + \exp(-\beta I_i)} \end{cases}$$

Impact Function

$$I_{i} = -s_{i}b - \sigma_{i}h - \sum_{j \neq i} \frac{s_{j}\sigma_{i}\sigma_{j}}{g(d_{ij})}$$

- s_i strength of influence
- *b* self-support
- h additional (external) influence which may be regarded as a global preference towards one of the opinions stimulated by mass-media, government policy, etc.
- $1/\beta$ may be interpreted as a "social temperature" describing a degree of randomness in the behaviour of individuals,

Brock - Durlauf Model Results:

Mean-Field Approximation of the Generalized Model

 $P(\sigma_{i}'=-1 \mid \sigma_{i}=-1) = P(U_{i}^{-}(\sigma_{i}'=+1) - U_{i}^{-}(\sigma_{i}'=-1) > 0) = P(m_{i}^{Th-} < m) \equiv F^{Th-}(m)$ $P(\sigma_{i}'=-1 \mid \sigma_{i}=+1) = P(U_{i}^{+}(\sigma_{i}'=-1) - U_{i}^{+}(\sigma_{i}'=+1) > 0) = P(m_{i}^{Th+} > m) \equiv 1 - F^{Th+}(m)$

$$m = \frac{F^{Th+}(m) + F^{Th-}(m) - 1}{1 + F^{Th-}(m) - F^{Th+}(m)}$$

 $F^{Th-}(m) = 1 - F^{h}(b^{-} + f^{-}(m))$ $F^{Th+}(m) = 1 - F^{h}(-b^{+} - f^{+}(m))$

 $F^{h}(x)$ - cumulative distribution function of *h*

Mean-Field Approximation of the Generalized Model – Stationary States

Graphical analysis of the generalized model for the selected parameter values

Plot of the left (dashed line) and right-hand (solid line) side of:

$$m = \frac{F^{Th+}(m) + F^{Th-}(m) - 1}{1 + F^{Th-}(m) - F^{Th+}(m)}$$

- stable stationary states,
- \bigcirc unstable stationary states.

Brock - Durlauf Model Small World Network

Dependence of hysteresis width on rewiring probability *Rewiring* networks from Order to Randomness

Basic model assumptions:

- The model's world is quasi two-dimensional.
- Parcels are homogeneous in terms of area and hydrological properties. They may differ in terms of channel segment condition.
- The time step is one year.
- The terrain under the parcels has a small, homogeneous slope along the channel's axis.
- Weather conditions are the same for all parcels.
- Weather conditions in one year do not influence the amount of water in the system in the next year.

Modeling Agents' Decisions Social Influence

Agent choice X is influenced by its social environment. Social influence *I* is defined as a random variables taking values 0 or 1 depending on the sum of others' choices.

<i>I</i> =0	1,2 or 3	other agents choosing 1
<i>I</i> =1	4 or 5	other agents choosing 1

$$\Pr(X'=1 \mid I) = \frac{1}{1 + \exp(-(d_0 + d_1 I))}$$

d_0	0.8397
d_1	1.0412