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Abstract

Basic evidences on non-profit making and other forms of benevolent-based or-
ganizations reveal a rough partition of members between some pure consumers of
the public good (free-riders) and benevolent individuals (cooperators). We study
the relationship between the community size and the level of cooperation in a sim-
ple model where the utility of joining the community is proportional to its size.
We assume an idiosyncratic willingness to join the community ; cooperation bears
a fixed cost while free-riding bears a (moral) idiosyncratic cost proportional to the
fraction of cooperators. We show that the system presents two types of equilibria:
fixed points (Nash equilibria) with a mixture of cooperators and free-riders and
cycles where the size of the community, as well as the proportion of cooperators
and free-riders, vary periodically.

Key-Words: Collective Systems, Complex Adaptive Systems, Social Interac-
tions, Cycles.

1 Introduction

The aim of this paper is to study the relationship between the growth of
a group - or community - and the quality of cooperation within this group.
This concerns cooperative organizations, usually studied by anthropologists,
volunteer organizations like non-profit associations and charities, informal
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groups in the internet such as knowledge communities, open-source software
communities, and many others.

Generally, contributing to the aim of the community bears some cost.
But free-riding on the cooperators’ efforts may also be a burden because
such behavior is contrary to the social norms generally accepted in such
communities and may be felt as a failure of personal morality. Thus, even
if membership is voluntary, the members of such associations face a social
dilemma, because they may benefit of their participation without contribut-
ing to the social good (or the common cause). Actually, a polymorphic
configuration where cooperators and free riders coexist seems to be a stable
form of organization. Clearly, if all the individuals shirk, everybody gets
worse and the community may even disappear.

There is a vast literature on social dilemmas. Olson [1] and early work on
the Prisoner Dilemma, a game theoretical formulation of this type of prob-
lems, predicted that selfish individuals have no interest to cooperate in the
production of a public good, and as a result, at equilibrium all the players
should be free-riders. However, many experimental economic studies (see
[2] for an extensive survey) do not support this claim. Although a stable
cooperation is rarely attained in finitely repeated public good games, there
is substantial cooperation on the average, at least in the first periods. More
generally, reciprocity, reputation-based altruism and sanctions are mecha-
nisms that may help high and stable cooperation levels to emerge among
selfish individuals. They give raise to social norms, which are standards of
behaviors based on shared beliefs of how individuals ought to behave. In-
dividuals may value approval from their peers to a generous contribution
from their part. They may also value negatively their own free-riding be-
havior when peers contribute. All these mechanisms have proved efficient
in increasing the cooperation level in experiments. Altruistic enforcement
may be provided by the players after each period [3] or by external (third
party) players [4]. In finitely repeated games [5], they generally contribute
to increase the cooperation rates but do not succeed to achieve complete co-
operation. Although these experiments do not explain why some individuals
are willing to bear the cost of punishing, they show that such individuals
exist.

The experimental results are usually presented as averages of the in-
dividuals’ behaviors over several groups playing under similar experimen-
tal conditions. However, this average may hide quite complex individual
behaviors. In a public goods experiment Hichri and Kirman [6] showed
that, despite very smooth trends of average contributions, individual groups
behaviors may have a very large volatility, with oscillations that become
completely smeared-out after averaging. Thus, the actual behavior of in-
dividuals in public goods games may be much more complex than usually
described. Another evidence is the indirect reciprocity game [7], where there
is an asymmetry in the social connexions built-in by the oriented ring of in-
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teractions. Although the aggregate behavior seems almost monotonic along
the periods (besides the break at which the protocol of the game –the deci-
sion dynamics– changes from parallel to sequential), the individual behavior
(the amount invested at each decision conditional to the received amount)
is indeed highly oscillatory. However, little attention has been paid to these
oscillatory phenomena in the literature of public goods so far.

Theoretically, besides some simple games, which present cycles clearly
related to their payoffs structures (like Rock, Paper and Scissors and similar
games [8]) there are few examples of oscillatory behavior in large systems
in the literature. Huberman and Glance [9] have shown that in a pub-
lic goods problem with large populations, cycles and even chaos may be
the asymptotic behavior of the system when individuals adopt particular
decision strategies. In particular, if there are opportunistic individuals hav-
ing a non-monotonic probability of cooperation (cooperate when there are
few cooperators but free-ride if the fraction of cooperators increases above a
threshold) cycles in the fraction of cooperators may exist. More recently [10]
it has been shown that finite populations may oscillate between three types
of strategies when playing the prisonner’s dilemma. These are cycles in the
strategy space, but do not necessarily give raise to cycles in the decisions or
actual payoffs of the players. However, such cycles disappear in the limit of
very large systems. In fact, large systems of interacting agents with the usual
best response dynamics may present a cyclic behavior at equilibrium when-
ever the interactions are non-symmetric. Iori and Koulovassilopoulos [11]
have shown that a simple model of consumers with social interactions similar
to the one proposed by Durlauf [12] present oscillations in the consumption
level provided that the interactions are sufficiently asymmetric. This gen-
eralizes well known results in the statistical physics literature, where it is
known that the attractors of systems with completely asymmetrical interac-
tions (i.e. the influence of individual i on individual j and that of j on i have
opposite signs) may be cycles of order 2 or 4, depending on the decisions
dynamics. Moreover, even with symmetric interactions, if all the individu-
als make their decisions at the same time (parallel dynamics) cycles of order
two cannot be excluded (although they are seldom observed in computer
simulations).

In this paper we raise the question of the types of equilibria that may
appear in the case of heterogeneous populations, when the heterogeneity is
related to both the willingness to join the community, and the strength of
the moral burden felt by free-riders. Besides the possible fixed point Nash
equilibria, we also look for the possible existence of oscillatory behavior,
i.e. cycles. More specifically, intuition suggests that a community is more
likely to be stable if the amount of cooperation within the group is high.
However, the conditions under which a polymorphic community with both
free-riders and cooperators may exist in equilibrium, is still an open question.
In particular, is there some threshold of cooperation level beyond which
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such a community may be stabilized? Another question is whether, from a
collective point of view, it is better to have a large community with a large
proportion of free-riders or a relatively small one but with a majority of
cooperators.

We consider the model proposed in [13], which is an extension of the
basic economic model of binary choices with externality [12, 14, 15, 16]. It
considers a population of interacting individuals with idiosyncratic prefer-
ences that have to decide whether to join a peers organization and cooperate,
whether to join it without cooperating (free-riding) or whether not to join
it at all. Cooperators bear a fixed cost, but free-riding has an idiosyncratic
cost due to the social disapproval [5] experienced by a free-rider when facing
cooperators.

The paper is organized as follows: section 2 summarizes the details of the
model. Section 3 is devoted to the study of the different possible equilibria
in the limit of an infinite population under parallel and random sequential
dynamics. In section 4 the results are applied to a particularly interesting
case. We show that beyond the usual Nash equilibria, that correspond to
fixed points, cycles are also expected. The theoretical analysis is compared
with computer simulations, showing that cycles persist in finite size systems.
The results are discussed in section 6, and we conclude in section 7.

2 The model of choice with social interactions

We consider a population of N agents in which each individual i must choose
one among the following three possibilities:

• to join the community and cooperate (si = 1)

• to join the community and free-ride (si = −1)

• not to join the community (si = 0)

In the following, we denote ηc and ηf the population fraction of cooper-
ators and of free-riders respectively,

ηc =
1
N

N∑

k=1

δsk,1 (1a)

ηf =
1
N

N∑

k=1

δsk,−1, (1b)

where δs,s′ denotes the Kronecker delta (= 1 if s = s′, 0 otherwise). The
total fraction of individuals in the population that belong to the organization
is ηc + ηf .

We assume that each agent i has a private estimate Hi of the value of the
community, that determines his idiosyncratic willingness to join (IWJ) it.
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Besides, the community value depends on its social composition, increasing
proportionally to the fraction of individuals that join it. We assume that
this social component takes the simple form of a badwagon effect, given by
(J + G)ηc + Jηf with J ≥ 0 and G ≥ 0. The term (J + G)ηc means that
the social benefit produced by each cooperator is (J + G)/N , while it is
only J/N per free-rider. With these hypothesis, free-riders also help making
the community attractive, although to a lesser extent than cooperators.
Therefore, the value of the community for an individual i is Hi + (J +
G)ηc + Jηf .

Cooperators bear a fixed cost C ≥ 0 that we assume constant, the same
for everyone. Free-riders in contrast support a cost proportional to the
number of cooperators, weighted by an idiosyncratic factor Xi ≥ 0. This
cost may be interpreted as a moral burden: Xi reflects the importance given
by i to the disapproval of cooperating peers.

The utility or surplus Ui of individual i depends on his own choice as
well as on the choices of the others:

Ui(si = +1|ηc, ηf ) = Hi + (J + G)ηc + Jηf − C, (2a)
Ui(si = −1|ηc, ηf ) = Hi + (J + G)ηc + Jηf −Xiηc, (2b)

Ui(si = 0|ηc, ηf ) = 0. (2c)

We assume that individuals have a myopic behavior, i.e. at each time step
every agent makes the choice which maximizes his utility, estimated from
the current observed values of the fractions of cooperators and free-riders.

This model is different from the usual games considered in experimental
economics of public goods. In the latter, an amount proportional to the
individual contributions (Cη in our model) is equally distributed among the
members. Such models are suited for explaining cooperation in small groups
whose members are remunerated according to the collective output. Here we
consider large organizations whose value is strongly related to their collective
action, but whose production is not redistributed among the members. This
is the case of non-profit organizations and other kinds of communities cited
in the introduction. The value of the community is not related to the costs
bore by its members, but to their number: larger communities are more
attractive.

It is convenient to write the surplus of i as follows:

Ui (si |s−i ) = (Ai + Bi) δsi,1 + Ai δsi,−1 (3)

where s−i represents the choices of the other agents. Ai is the surplus of
joining the community being free-rider, and Bi is the bonus for cooperating:

Ai = Hi + (J + G−Xi)ηc + Jηf , (4)
Bi = Xiηc − C. (5)
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Then, the best response of agent i given the choices of the other agents may
be written as follows:

si = 1⇐⇒ Ai + Bi > 0 and Bi > 0; (6a)
si = −1⇐⇒ Ai > 0 and Bi < 0; (6b)
si = 0 otherwise (6c)

Notice that, by eq. (6a) we may have Ai < 0 compensated by a positive
Bi, making thus profitable for i to join the community provided that he
cooperates. This may be the case for highly moral individuals, i.e. having
large weights Xi.

One can note that in this model the social interactions are not symmet-
ric because of the idiosyncratic weights Xi. More precisely, the interaction
between cooperators is symmetric: if i and j are both cooperators, they
contribute equally to their respective utilities, by (J + G)/N . But when-
ever one free-rider at least is involved, interactions are non-symmetric. For
example, if i cooperates and j free-rides, the contribution of i to j’s utility
is (J + G − Xj)/N while the contribution of j to i’s utility is J/N . Due
to this dissymmetry there is no general result ensuring that the dynamics
converges to fixed point solutions. These are guaranteed only for symmetric
interactions (see [11] for a discussion in a case of social systems). Thus,
cyclic attractors and even chaos may exist. Notice also that some agents
may have Xi < J + G, and others Xi > J + G: that is, there may be
a mixture of positive and negative influences. In this case, reminiscent of
spin-glass systems in physics, there may be a very large number of equilibria
for some range of parameters. Although multiple equilibria do appear as the
generic situation in our model, we will see that their number remains small,
at least for the particular case of global interactions considered here.

In our analysis we assume that the idiosyncratic terms Hi and Xi are
randomly distributed among the population, with averages H and X and
variances σH and σX respectively. For the analysis it is convenient to work
with dimensionless variables. To this end we divide all the parameters en-
tering the utility by a quantity that plays the role of unit of measurement1,
that we denote β. Thus we write

Hi = β(h + yi) (7)

where H ≡ βh stands for the population’s average willingness-to-join the
community. Thus, yi is a dimensionless random variable; its probability
density function (pdf) fY (y) has zero mean and variance σH/β. We denote
the parameters of the model in units of β with small characters:

h =
H

β
, j =

J

β
, g =

G

β
, c =

C

β
, xi =

Xi

β
, (8)

1We may choose any convenient unit, like H, σH , homogeneous to a utility.
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and correspondingly, ai = Ai/β, bi = Bi/β.
Hereafter we consider the equilibria corresponding to an iterative best

response dynamics: starting from an arbitrary initial condition each agent
chooses the strategy that maximizes his surplus. Agents may either make
their decisions simultaneously (parallel dynamics) or one after the other in
an arbitrary order (random sequential dynamics).

y=xηc-h-(j+g)ηc-jηf

do not join
(ai<0 ; ai+bi<0)

free-ride
(ai>0 ; bi<0 )

y

x

cooperate
(bi>0 ; ai+bi>0)

x=c/ηc

y=c-h-(j+g)ηc-jηf

Figure 1: Boundaries between regions corresponding to the different indi-
vidual choices, as a function of the values of the (dimensionless) quenched
random variables yi and xi.

In order to get some insight about the problem, it is useful to consider
a plane whose axes are the quenched random variables x (abscissas) and y
(ordinates), where each individual i is represented by a point according to
his values (xi, yi). Then, for any given values of ηc and ηf , the lines

y = ym ≡ c− h− (j + g)ηc − jηf , (9a)
y = ym − c + xηc, (9b)

x = xm ≡
c

ηc
, (9c)

represent the marginal individuals whose utilities are at the boundaries be-
tween different optimal strategies. These lines partition the (x, y) plane into
three regions, represented on figure 1. The optimal strategy of individuals
whose (xi, yi) values lie in the upper-right region, defined by

xi > xm or bi > 0, (10a)
yi > ym or ai + bi > 0, (10b)
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is to cooperate. The best strategy for those whose (xi, yi) satisfy

xi < xm or bi < 0, (11a)
yi > ym − c + xiηc or ai > 0, (11b)

is to free-ride. Individuals with (xi, yi) in the lower-right region do not join
the community.

3 Mean field dynamics

We are interested in the temporal evolution of the system within an iterated
game setting, in which individuals have to choose their best strategies si(t)
based on the available information. We assume that each time an agent has
to make a decision, he has the exact information of the global proportions of
cooperators and free-riders at the preceding outcome, ηc(t−1) and ηf (t−1),
and uses these quantities to estimate his surplus (2). Such a dynamics is
called Cournot best reply in economics literature. In simulations, starting
from initial guesses ηc(0) and ηf (0), the updating is said to be in parallel
if all the individuals in the population first determine their best strategies
based on the preceding outcome, and make their decisions simultaneously
afterwards. At the opposite, in random sequential updating, a single indi-
vidual selected at random is asked to make his decision at each time step.
The latter dynamics simulates systems where the individuals make their
decisions without any temporal correlation. In order to compare the time
scales of both dynamics, it is usual to consider that N sequential time steps
are equivalent to one parallel update. Intermediate updating schemes may
be implemented, but here we only consider these two extreme cases, that
are standard in economics and in statistical physics.

Referring back to figure 1, since the boundary lines depend on the values
of ηc(t) and ηf (t), they will shift in the course of updating according to
the perceived proportions of cooperators and free-riders. Individuals whose
values of yi and xi lie close to the boundaries are susceptible to small changes
of ηc and ηf : their strategies may change with time, and in turn induce
changes in those of the others.

Hereafter we study how the system reaches its stable states upon suc-
cessive updates, that is, the path followed by a point representative of the
system’s state in the plane (ηc, ηf ). Such paths should either end up in a
stable fixed point or get trapped in other types of attractors if they exist.
In the following we consider separately the parallel and sequential updating
schemes, since the corresponding dynamic equations are different.

Let us introduce the complementary cumulative functions defined by:

Gχ(ζ) ≡ 1− Fχ(ζ) =
∫ ∞

ζ
fχ(ξ)dξ, (12)
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where χ ∈ {X, Y }, and Fχ(ζ) is the cumulative distribution of fχ. Using the
fact that y is independent of x, the probabilities p and q that an individual
i taken at random will cooperate or free-ride respectively at the next time
step given values of ηc(t) and ηf (t) are

p(si(t + 1) = 1) ≡ p(ηc(t), ηf (t)) =
∫ ∞

xm(t)
fX(x)dx

∫ ∞

ym(t)
fY (y)dy

= GX(xm(t)) GY (ym(t)), (13a)

q(si(t + 1) = −1) ≡ q(ηc(t), ηf (t)) =
∫ xm(t)

−∞

∫ ∞

ym(t)−c+xηc(t)
fX(x)fY (y)dydx

=
∫ xm(t)

0
fX(x) GY (ym(t)− c + xηc(t)) dx, (13b)

where ym(t) and xm(t) are given by equations (9c) and (9a) respectively
with ηc = ηc(t) and ηf = ηf (t).

3.1 Fixed point equations

We consider the limit of very large populations, namely N →∞, for which
ηc and ηf are unbiased estimators of the probabilities of cooperate and free-
ride respectively. Since at a fixed point the probabilities of the possible
strategies are stationary, they satisfy equations (13) with p = ηc, q = ηf :

ηc = p(ηc, ηf ), (14a)
ηf = q(ηc, ηf ). (14b)

Notice that the trivial solution ηc = 0 satisfies (14a), corresponding to a
state where nobody contributes to the public good. The community survives
because when ηc = 0 free-riders do not suffer from any moral burden. The
model in this case reduces to the model with (symmetric) social interactions
j considered in [16]. Here ηf plays the role of the fraction of customers,
and may present a single or two fixed points depending on whether the
interaction strength j is smaller or larger, respectively, than a critical value
jB = 1/fY (ymax) where ymax is the maximum of fY , the IWJ distribution.

Notice however that Nash equilibria without cooperators are a drawback
of our keeping the model simple enough to be studied analytically. The
main question, namely whether polymorphic organizations with coexistence
of cooperators and free-riders are stable, is meaningful outside the region
ηc = 0.

3.2 Parallel dynamics equations: two-dimensional map

In parallel dynamics, one assumes that the agents update their strategies
simultaneously, starting from an arbitrary initial configuration. The per-
ceived ηc and ηf used by all the agents to estimate their utilities are the
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same. The boundary lines between the three regions of figure 1, which de-
pend on ηc(t) and ηf (t), partition the population at time t according to
their estimated utilities: all the individuals whose idiosyncratic parameters
lie in region I will choose to cooperate, those in region II to free-ride and
those in region III not to join. In this way, using equations (13), the dynam-
ics can be formulated as the following two-dimensional deterministic map
Ω :( η′c, η

′
f ) = (p(ηc, ηf ), q(ηc, ηf )) in the simplex S := {(ηc, ηf ) : ηc ≥ 0, ηf ≥

0, ηc + ηf ≤ 1}, namely:

ηc(t + 1) = p(ηc(t), ηf (t)), (15a)
ηf (t + 1) = q(ηc(t), ηf (t)). (15b)

Thus, the fixed points (14) are the fixed points of the parallel dynamics.
The results presented in this section shed light on their nature and allow to
determine if there are other kinds of equilibria.

In two-dimensional maps or flows, a fixed point is called a sink if all the
points in its neighborhood converge to it, a source if these points diverge
from it and a saddle if in one direction the map or flow converges, while in the
other directions it diverges. Together these three types are called hyperbolic,
which is the only kind of equilibria possibly encountered in a structurally
stable system, i.e. a system stable with respect to small variations of the
parameters (in our case h, j, g, c and d). For our two-dimensional map,
the nature of an equilibrium point (ηc0, ηf0) is determined by the following
Jacobian matrix

Jm =
[

∂p(ηc0, ηf0)/∂ηc ∂p(ηc0, ηf0)/∂ηf

∂q(ηc0, ηf0)/∂ηc ∂q(ηc0, ηf0)/∂ηf

]
.

Denoting the two eigenvalues of Jm as ω1 and ω2, then the fixed point is a
sink if |ω1| < 1 and |ω2| < 1, a source if |ω1| > 1 and |ω2| > 1 and a saddle if
(|ω1|− 1)(|ω2|− 1) < 0 ([17] §1.4). There are two types of curves emanating
from each saddle point x0, namely the stable manifold, defined as

Ws(x0) = {x ∈ R2|Ωt(x)→ x0 as t→∞} (16)

and the unstable manifold, defined as

Wu(x0) = {x ∈ R2|Ω−t(x)→ x0 as t→∞} (17)

Ω−1 denoting a backward iterate of the map. The boundaries of the basins of
attraction are usually formed by stable manifolds. Moreover, if a transversal
intersection between the stable and unstable manifolds of the same saddle
point exists, the map will exhibit chaotic behavior.
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3.3 Random sequential dynamics equations: two-dimensional
flow

In sequential dynamics, one updates one agent chosen at random in each
time step. It is usual to consider N (the number of agents in the system)
successive updates (called one Monte-Carlo step) as being comparable to
one step of parallel updating, i.e., the time step between two successive
individual updatings is τ = 1/N .

In each individual update, the expected displacement of the pair (ηc, ηf )
is

ηc(t + τ) = ηc(t) + (1/N)(p(ηc(t), ηf (t))− ηc(t)), (18a)
ηf (t + τ) = ηf (t) + (1/N)(q(ηc(t), ηf (t))− ηf (t)), (18b)

where p and q are defined in (13), and the factor 1/N is the probability of
selecting the agent that is updated. Taking the continuous limit N → ∞,
we have the following set of differential equations:

dηc

dt
= p(ηc, ηf )− ηc, (19a)

dηf

dt
= q(ηc, ηf )− ηf , (19b)

with the time unit being one Monte-Carlo step. Now the system evolves as
an autonomous system in a planar phase space, i.e. as a two-dimensional
flow in S. Clearly, the fixed points of the sequential dynamics are the same
as the equilibria (14).

The three generic types of equilibria, namely source, sink and saddle
exist in a structurally stable two-dimensional flow as well. The nature of
an equilibrium point (ηc0, ηf0) is now determined by the Jacobian matrix of
the flow

Jf =
[

∂p(ηc0, ηf0)/∂ηc − 1 ∂p(ηc0, ηf0)/∂ηf

∂q(ηc0, ηf0)/∂ηc ∂q(ηc0, ηf0)/∂ηf − 1

]
.

Denoting the eigenvalues of Jf as ω′1 and ω′2, then the point is a sink if ω′1 < 0
and ω′2 < 0, a source if ω′1 > 0 and ω′2 > 0 and a saddle if ω′1ω

′
2 < 0 ([17]

§1.2∼1.3). Note that the condition for an equilibrium to be a saddle gives the
same inequality as in the parallel case. Therefore, the set of saddle points in
sequential updating coincides with that in parallel updating. However, the
set of sinks or sources are not necessarily the same in both cases, since the
governing inequalities are quite different. The definitions of the stable and
unstable manifolds are analog to those in the two-dimensional map with the
discrete time step replaced by the continuous time variable t. According to
the Poincaré-Bendixson Theorem ([17] Theorem 1.8.1), the two-dimensional
flow system will never go into chaos.
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4 Equilibria for particular distributions fX and fY

To go further with the analysis of the preceding section we need to specify
the pdfs of the idiosyncratic parameters. In this paper we present the most
interesting of the cases we have studied, in which the xi follow a uniform
distribution of finite width d:

fX(x) =
1
d

for 0 ≤ x ≤ d, (20a)

fX(x) = 0 otherwise. (20b)

and the yi are distributed according to:

fY (y) =
1

4 cosh2(y/2)
. (21)

The cumulative function corresponding to (21) is the logistic distribution.
The complementary functions (12) are:

GX(z) = (1− z)Θ(1− z), (22a)
GY (z) = 1/[1 + exp(z)], (22b)

where Θ is the Heaviside function.

Fixed points

The fixed point equations (14) may be written as follows:

ηc = (1− ρ

ηc
)Θ(1− ρ

ηc
) GY (c− Z) (23a)

ηf =
ρ

cηc
log[1 + (ec − 1)GY (c− Z)], (23b)

where ρ ≡ c/d and Z ≡ h + j(ηc + ηf ) + gηc. Since fX has a bounded
support, equation (23a) vanishes if 0 ≤ ηc(t) ≤ ρ. Thus, if ηc(0) ≤ ρ, the
system evolves towards the trivial equilibrium without cooperators. In par-
allel dynamics, equation (15a) gives ηc(1) = 0: the state with no cooperators
is reached after a single parallel update. Afterwards, on the axis ηc = 0, ηf

evolves according to equation (15b),

ηf (t + 1) = GY (−h− jηf (t)). (24)

The equilibrium value of ηf is given by (14b), obtained by replacing ηf (t)
and ηf (t + 1) by ηf in the above equation. As already mentioned (see
[16]) there is a critical value of j, jB, such that for j < jB, there is a
single equilibrium. In that case all the points ηc(0) < ρ will eventually be
mapped to it. If j > jB (14b) has three solutions. One of them, ηfu, is
an unstable fixed point separating the basin of attraction of the two others,
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that are stable. To summarize, when ηc(0) < ρ, after a first time step
the system is mapped to the axis ηc = 0 and then evolves, following (24),
either to one fixed point (if j < jB) or to one of two fixed points (if j >
jB) depending on whether ηf (0) > ηfu or ηf (0) < ηfu. In the case of
the logistic distribution fY considered here, jB = 4 [15]. Under random
sequential updating, since p(ηc(0), ηf (0)) = 0 for 0 ≤ ηc(0) ≤ ρ, equation
(19a) shows that ηc vanishes exponentially fast, the fixed points being the
same as for the parallel dynamics. These solutions have been described here
for completeness since, as already stated, they are not within the scope of
the questions addressed by the model

Notice that there are no fixed points with ηf = 0: since GY ≥ 0, the
right hand side of (23b) vanishes only if c = 0, i.e. full cooperation may
exist only if cooperation is costless.

When ηc(0) > ρ, calling G the value taken by GY (c−Z), equation (23a)
gives ηc = (1− ρ

ηc
) G, which can be solved for non-vanishing ηc in terms of

G:
ηc = η±c [G] ≡ 1

2
G {1 ± [1− 4ρ

G
]1/2} (25)

Later we shall see that both the + and the − branches may give stable
equilibria, though the parameter range for which a stable equilibrium exists
for the − branch is much narrower than for the + branch. From (25) one
gets that the Nash equilibria with cooperators satisfy ηc ≥ 2ρ (equality can
occur when j = g = 0): the fraction of cooperators is larger than a threshold
given by the cooperation cost relative to the average weight (x̄ = d/2) of
the social disapproval for free-riding.

Equation (23b) can also be parameterized in terms of G by defining

η ≡
j(ηc + ηf ) + gηc

j + g
. (26)

Introducing (25) and (23b) into (26) we obtain an equation for η:

η = η1[G] ≡ η±c [G] +
j

j + g

1
η±c [G]

1
d

log[1 + (ec − 1)G] (27)

Inverting (22b) for z = c− h− (j + g)η, we obtain η in terms of G:

η = η2[G] ≡ 1
j + g

{c− h− log
1−G

G
}. (28)

The possible solutions η are then obtained by the intersects of the curves
η1[G] and η2[G]. Introducing the corresponding value of G into (25) allows
to determine ηc, and then ηf is deduced by introducing the values of ηc and
η into (26). An example of curves η1[G] and η2[G] (G ∈ [0, 1]) is shown on
Figure (2). There are up to 3 intersects (for h − c = −3.3), although one
can check that at most 2 correspond to stable fixed points.
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Figure 2: Fixed points. Solution by curve intersection for distributions fX and fY

given by equations (20) and (21).
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Figure 3: Regions of existence of the different stable equilibria under parallel and
random sequential dynamics (see appendices A.1 and A.2 for the values of the λn

and the µn).
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Equilibria with parallel dynamics.

Notice that the above analysis allows to determine the fixed points of the
system, but doesn’t give any hint about the existence of cycles. We have
thus numerically computed the stable and unstable manifolds for each saddle
point, with the same set of values for j, g, c and d as in figure 2, while
changing h− c from −4 to −3 in steps of 0.02. We summarize here the main
results, leaving the details to appendix A.1.

Besides the trivial fixed point(s) with ηc = 0, for any h − c ≥ −3.4201
there is a fixed point O+ corresponding to a relatively large organization
having a proportion of cooperators larger than the proportion of free-riders.
This occurs for cooperation costs relatively large compared to the average
willingness to join (h − c is negative). The value of j considered is large
enough to compensate negative values of hi − c on a large fraction of the
population, producing a bandwagon effect. For −3.3504 < h− c < −3.1146,
this fixed point O+ coexists with another non-trivial attractors (see figure 3).
For −3.3504 < h− c < −3.2726, the attractor is a limit cycle CS . It shrinks
(at h − c = −3.2726) to a second fixed point O′

+ which corresponds to an
organization with qualitatively similar proportions of cooperators and free
riders, and with fewer members than at the equilibrium O+. This second
fixed point O′

+ exists for −3.2726 < h − c < −3.1146. For larger values
(h− c > −3.1146) it disappears, leaving only the fixed point O+ with a very
large basin of attraction.

Figures 4 and 5 present the results for two values of h− c in the regions
where we expect coexistence of the two non-trivial attractors. On the left
hand side are represented the different manifolds predicted by the mean field
theory (details lefts to Appendix A.1). On the right hand side we present
the dynamical paths obtained under parallel dynamics updating of a system
with N = 1000 agents with the same parameters, starting from different
initial conditions. The agreement with the analytical results is very good,
although there are some finite size effects (see the figure’s legend). One of the
most striking result of the simulations are the winding trajectories that turn
around over long times before reaching the corresponding attractor. This
means that an oscillatory behavior might be observed in actual systems even
before convergence to the cycle attractor. Notice also that these oscillations
may exist even if the system is expected to reach a Nash equilibrium.

4.1 Equilibria with random sequential dynamics

We have also computed the stable and unstable manifolds for the flow, the
mean field approximation for sequential dynamics. The results, presented
in appendix A.2 are summarized on figure 3. They are similar to those with
parallel dynamics, although for the parameters considered (j = 5, g = 1,
c = 4.5 and d = 72) the system only presents fixed points. Cycles exist, but
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Figure 4: Left. Stable and unstable manifolds of the theoretical saddle points in
the plane (ηc, ηf ) for the same parameter values as in figure 3, with h− c = −3.3.
The non trivial attractors are a stable cycle Cs (its basin of attraction is limited by
the dashed line corresponding to the stable manifold of H+, with its two ends at
the line ηf = 0). The point O+ is a fixed point. Its basin of attraction is the region
bounded by the stable manifold of H− between the lines ηc + ηf = 1 and ηf = 0,
excluding the basin of attraction of Cs.
Right. Trajectories of the simulated system for four different initial conditions,
that converge respectively to a trivial fixed point (squares), to a cycle of length
41 (empty triangles), to a fixed point (full circles) not predicted by the mean field
equations (due to finite size effects) and to the non-trivial fixed point O+ (empty
circles).
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Figure 5: Left. Theoretical equilibria for the map in the plane (ηc, ηf ), for the
same parameter values as in figure 3, with h− c = −3.2. The stable limit cycle Cs

has merged with the source X+ through a Hopf bifurcation to become a sink O′
+,

whose basin of attraction is the stable manifold of the saddle H+.
Right. Trajectories of the simulated system (parallel dynamics) for five different
initial conditions. One of them converges to a trivial fixed point (squares), one
(circles) to a cycle of length 13 (instead of the predicted non-trivial fixed point
O′

+), the three others (triangles) converge to the non-trivial fixed point O+, which
has a large basin of attraction.
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for other parameter values, as discussed in the appendix.
Figure 6 presents an example of evolution of the same system under

parallel and sequential dynamics, showing the dramatic difference between
both types of updating rules.

Figure 6: Examples of trajectories for parallel and random sequential dynamics
starting from the same initial conditions, for a system with the same parameter
values as in figure 3, and h− c = −3.3.

5 Simulations results and phase diagrams

The theoretical results of the preceding sections predict the behavior of an
infinite system. On figure 7 we present the phase portrait obtained through
parallel dynamics with systems of different sizes, for h − c = −3.3 and
the same set of parameters as in figure 4. Starting from different initial
conditions, we determined the attractors in the phase space (ηc, ηf ). As N
decreases, more and more fixed points invade the region where cycles exist,
and many different cycles appear. This multiplicity of attractors is due to
missing values of the IWJ in the finite population. However, the mean field
predictions, and in particular the existence of cycles, remain qualitatively
correct.

In order to get deeper insight on the phase diagram of the model, we
studied the attractors of large systems as a function of the different param-
eters. Results as a function of h − c, summarized on figure 8, are in very
good agreement with the mean field predictions, as may be seen through the
position of the theoretical boundaries λn.

Figures 9 present separately the ηc values at the fixed points and at the
cycles for systems of different sizes, ranging from N = 1000 to N = 100 000,
as a function of h − c. Consistently with the above results, the size effects
are important, but do not modify qualitatively the phase diagram.

As may be seen on figure 10 (left), the fraction of the phase space that
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Figure 7: Attractors and their basins of attraction for different system sizes, ob-
tained by starting from all the possible initial conditions (with a mesh of 0.01).
Parameters are: j = 5, g = 1, d = 72, h = 1.2. The white region is the basin of
attraction of the cycles.

Figure 8: Attractors for parallel dynamics with N = 100 000, for 20 simulated
systems, with the same parameters as in the preceding figures, i.e. j = 5, g = 1,
c = 4.5 and d = 72. The points in this and the following figures are obtained as
follows: we draw 20 systems at random with probabilities fX and fY . The points
in the figures correspond to the final states obtained for each system, starting from
each possible initial point in the plane ηc, ηf laying on a grid of mesh 0.1 satisfying
the condition ηc + ηf ≤ 1. That corresponds to 45 different initial conditions for
each of the 20 systems, i.e. a total of 900 simulations.
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Figure 9: Fixed points (left) and cycles (right) obtained through simulations of
systems of different sizes.

corresponds to cycles increases dramatically with the width of the xi distri-
bution, as expected, since larger values of d correspond to higher anisotropy
in the interactions. The attractors as a function of the strength j of the
social interactions is represented on figure 10 (right). We observe that when
the bandwagon effect is large enough, the cycles disappear and only the fixed
point O+ with a large fraction of cooperators survives (besides the trivial
fixed point).
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c
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Figure 10: Phase diagram: Attractors as a function of d (left) and of j (right).

6 Discussion

In order to understand the existence of the limit cycles, we analyzed in
details the dynamics of a particular system with N = 100 individuals. We
isolated on figure 11 the agents involved in the limit cycle, identified by the
values of their parameters xi and yi. As expected, these values are close to
the marginal values (9), i.e. they lie close to the phase boundaries defined
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in figure 1. Notice that these boundaries depend on the values of ηc and
ηf , so that their positions change on time. In the course of the cycle, some
individuals oscillate between states si = 1 and si = 0, others between si = 1
and si = −1, and others between si = −1 and si = 0. Some even go
successively through the three possible states, as may be seen in the inset
of figure 11.

0 10 20 30 40 50 60
0

1

2

3

4

5

yi

xi

 1      0
 0      1
-1      1
 1     -1
-1      0
 0     -1

16 20 24

1.8

2.0

2.2

 

 

Figure 11: Parameters (x, y) space. Individuals involved in a cycle: in red those
that oscillate between cooperating or not to participate at all (outsiders), in black
those that oscillate between cooperating or free-riding, and in blue those that either
free-ride or do not participate. Notice (see inset) that some individuals may adopt
alternatively each of the three possible states.

Intuitively, the dynamics of the cycle is as follows: assume that at some
instant t (like at t = 26 in figure 12) the system has proportions ηc(t) and
ηf (t). Then, as more cooperators enter the organization, the cost of free-
riding becomes too high for some agents in the organization (those with
relatively large xi). These will leave the organization, decreasing thus the
total number of members. As a consequence, the value of the organiza-
tion decreases for everybody and both the fractions of cooperators and of
free-riders at the following periods will decrease. At some point, certain
individuals may join the organization as free-riders, because the social pres-
sure due to cooperators has decreased. As a result, the total number of
members increases making it worth for some cooperators to join the organi-
zation, initiating a new oscillation. As may be seen on figure 12, the cycle
is actually closed (in the mathematical sense) only after many oscillations,
when the fractions of cooperators and free-riders repeat themselves exactly.
It is interesting that the total fraction of members also oscillates, but with
a different phase, revealing the complexity of the dynamics.
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Figure 12: Cycles. Composition of the system for N = 1000.

In the computer simulations, the length of the cycles depend very strongly
on the particular realization of the random variables yi and xi. Figures 13
show examples for different system sizes. Notice that the length of the cy-
cles depend on the system’s details (the particular realization of the random
variables xi and yi) even for systems with 1 million agents. Finally, let
us point out that our results remain qualitatively unchanged if G = 0. In
contrast, the existence of cycles requires J > 0, as well as the two idiosyn-
cratic components, namely, the willingness to join Hi and the moral burden
weight Xi. In fact, it is straightforward to show that for J = 0 the dynamics
converges necessarily to fixed points.

7 Conclusion

In this paper we studied in details a model of a charity organization, or any
other organization whose value is proportional to the number of its members
[18]. Individuals may not participate, and those joining the organization may
or not cooperate. Thus, the size of the organization is an emergent property,
not fixed a priori.

We investigated whether such a voluntary organization may survive, and
under what conditions. Similar situations have been studied within the pub-
lic goods literature. According to the standard game theoretical assumption
of selfish individuals, such an organization is expected to be exclusively com-
posed of free-riders. However, daily life experience and experimental eco-
nomics results have shown that some level of cooperation often exists, a fact
attributed to moral feelings.
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Figure 13: Cycles. Total fraction of community members as a function of t for
different system sizes (left) and for three different systems with N = 106.

The model considers heterogeneous individuals; they have idiosyncratic
preferences for joining the community and they also weight idiosyncrati-
cally the social disapproval for free-riding. The surplus of the community
members is proportional to their number, be they cooperators or not, but
cooperators contribute more than free riders to the community value. Upon
joining, cooperators bear a fixed cost while free-riders suffer a cost due to
cooperators’ disapproval, that they weight idiosyncratically.

We have shown that in this model there are three kinds of equilibrium
attractors. There is a trivial Nash equilibrium for all the parameters of
the model, in which the organization is exclusively composed of free-riders.
Thus, the population is partitioned into two categories: the outsiders (those
that do not join the community) and the free-riders. Such an equilibrium
between only two strategies exists because in the model the community has
a value for its members even if nobody cooperates. In this extreme case
there is no cost for free-riding, and the parameter Xi does not play any role.
The system’s properties are the same as those of simple bandwagon models
where the individuals have to make a binary choice (to buy or not a good
at a given price, participate or not to a riot, etc). It has been shown [16]
that for some values of the pertinent parameters (h – the population average
willingness to join–, and j – the strength of the bandwagon effect –), there
may be one or two fixed points. Coexistence of two possible collective states
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(Nash equilibria), having either a large or a small fraction of free-riders, arise
for values of h smaller than, and j larger than, threshold values that depend
on the distribution of the idiosyncratic component Hi. Besides this trivial
equilibrium, the model considered here presents one or two Nash equilibria
with finite fractions of cooperators and free-riders.

An interesting result of this model is that besides the Nash equilib-
ria, it exhibits limit cycles with corresponding fractions of cooperators, of
free-riders (and their sum —the fraction of the population that joins the
organization—) oscillating through time. This phenomenon has its root in
the strong asymmetry of the interaction between agents, introduced by the
idiosyncratic weights that free-riders attach to social disapproval. Although
we studied in details the case where these weights Xi are uniformly dis-
tributed, we verified that the same kind of oscillations exist in the case of a
bimodal distribution2. The fixed points in this case may be found analyti-
cally.

We studied in details the dynamics of the cycles under parallel and ran-
dom sequential updating both analytically and numerically. Assuming a
global neighborhood (i.e. every agent’s surplus depends on the fractions of
cooperators and free-riders in the whole population), we obtained results
which are exact in the asymptotic limit N → ∞. The two-dimensional dy-
namical maps and flows have been studied for a large range of parameters.
Although qualitatively similar, the phase diagrams of maps and flows cor-
responding to the same parameters are not identical. The fact that a rich
class of bifurcations can occur within a narrow parameter region is in itself
truly remarkable. A natural question to ask is what happens in intermedi-
ate regimes, where subsets of agents make decisions simultaneously, while
others make them at independent times.

Numerical simulations of finite size systems with parallel dynamics qual-
itatively agree with the analytical results. The dynamical behaviour of the
simulated systems show winding trajectories in very large regions of the
phase diagram. Oscillations in the fraction of cooperators and free-riders
are thus expected in such systems before the onset of the cycle and even
when the attractor is a fixed point. We are currently performing simulations
with sequential dynamics, where the notion of cycle is not well defined, due
to the randomness in the order in which the agents’ decisions are updated.
Preliminary results also exhibit the above mentionned oscillatory behavior,
but the analysis of the data is much more cumbersome.

Future work should focus on the dynamics for interactions restricted
to closer neighborhoods, which probably requires more sophisticated tech-
niques from the theory of dynamical systems. Another interesting question

2Note added in proof: A similar model for an asset market with two kinds of agents,
that corresponds to a bimodal distribution of the Xi, restricted to binary decisions [19]
was shown to present cycles.
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is how the phase diagram is modified in the case where the agents learn from
past actions and can form expectancies.
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A Appendix

A.1 Phase structure of the maps
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Figure 14: The stable and unstable manifolds for increasing values of h − c. For
h− c = −3.7 only the trivial fixed points with ηc = 0 exist. For h− c = −3.4, H+

and O+ have been created from a saddle node bifurcation on η+
1 (G). At h − c =

−3.36 a separatrix bifurcation between the stable manifold of H− and the unstable
manifold of H+ has introduced a first order transition in the basin of attraction.
At h− c = −3.3 (reproduced from section 4) a separatrix bifurcation between the
stable and unstable manifolds of H+ has introduced a stable cycle Cs with its own
basin of attraction (the interior of the line Cs). At h − c = 3.2 (reproduced from
section 4) the stable limit cycle Cs has merged with the source X+ through a Hopf
bifurcation to become a sink O′

+. At h − c = −3.1 a final saddle node bifurcation
has annihilated O′

+ and H+.

The algorithms used to compute the stable and unstable manifolds can
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be found in [20] and Chapter 10 of [21], respectively. The results classified
according to the qualitative dynamical features are shown in figures (14).
Hereafter we consider a system with parameters j = 5, g = 1, c = 4.5,
d = 72, and provide the increasing values of h− c, denoted by λi, at which
the successive bifurcations appear, together with the qualitative descriptions
of their nature (figure 3 of section 4 summarizes the results).

• λ1 = −4.0971. For h − c < λ1 there exists no intersection between
η1(G) and η2(G) and all the points in S are eventually mapped to the
trivial fixed point, which is always a solution of the equations. At
h − c = λ1, η2(G) begins to intersect η−1 (G) at two points, one of
which is a saddle (H−) and the other is a source (X−). The process
of simultaneous creation or elimination of a pair of equilibrium points
is called a saddle-node bifurcation. Note that this bifurcation does
not alter the overall behavior of the system, since no new attractor is
created. Thus, only the fixed points ηc = 0, ηf > 0 exist, and since
j > jB, the system may flow to either of the two fixed points for ηf

depending on the initial conditions.

• λ2 = −3.4201. Another saddle-node bifurcation happens on η+
1 (G) at

h−c = λ2, with a saddle (H+) and a sink (O+) created simultaneously.
Now the stable manifolds of H+ and H− possess a common end ema-
nating from X+, and together they divide S into two regions. Points
outside the region bounded by the stable manifolds should converge
to the trivial fixed point ηc = 0, ηf > 0 as before, and those inside to
O+.

• λ3 = −3.3617. For λ2 < h − c < λ3, the unstable manifold of H+

approaches the stable manifold of H− until they coincide at h−c = λ3

(the common manifold is called a separatrix between H+ and H−). Be-
yond this value, the unstable manifold of H+ folds back and converges
to O+ while the stable manifold of H− hits the simplex boundary
ηf = 0. Now the basin boundary is determined solely by the stable
manifold of H−, causing the basin of attraction of O+ to experience a
sudden expansion.

• λ4 = −3.3504. For λ3 < h− c < λ4, the stable and unstable manifolds
of H+ approach each other until they coincide at h− c = λ4. Beyond
this value, the former ends up at the boundary ηf = 0 of S and the
latter folds back into a stable limit cycle Cs around X+. At this
transition Cs is introduced into the system as a new attractor with its
own basin of attraction delimited by the stable manifold of H+.

• λ5 = −3.2726. For λ4 < h− c < λ5, Cs shrinks and eventually merges
with X+ at h−c = λ5 to produce a sink O′

+. The process of transition
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between a sink and a source with the simultaneous appearance or
disappearance of a limit cycle is called a Hopf bifurcation.

• λ6 = −3.1146. For λ5 < h− c < λ6, O′
+ and H+ approach each other

until they are annihilated at h − c = λ6. We are left with H− and
O+, the stable manifold of H− serving as the basin boundary. This
topology persists for arbitrarily larger values of h− c.

Summarizing the analysis above, we can identify three types of transi-
tion:

1. saddle-node bifurcation;

2. Hopf bifurcation;

3. separatrix bifurcation between two saddle points, or one saddle point
with itself.

Type 1 can be directly determined from the number of intersections between
η1(G) and η2(G) (cf. figure 2), or from the fact that Jm has an eigenvalue
+1. Due to the lack of symmetry in our system, transcritical and pitchfork
bifurcations never occur ([17] §3.4). In case that Jm has an eigenvalue −1,
one can have a period-doubling bifurcation ([17] §3.5). This never happens
in our map, since one can easily verify that

Jm(1, 1) > 0, Jm(2, 2) > 0, ∆(Jm) > 0, (A-1)

which excludes the possibility that Jm has a negative eigenvalue.
Types 2 and 3 cannot be observed from the intersections between η1(G)

and η2(G) and must be determined numerically. Type 2 remains a local
bifurcation with Jm having a pair of conjugate complex eigenvalues with
unit modulus. In contrast, Type 3 is a global bifurcation with the area of
the basin of attraction experiencing a sudden jump or, in physicist’s terms, a
first-order transition. Numerically we have found no evidence for homoclinic
intersection leading to chaos, but the question as to whether chaos exists in
our two-dimensional map remains open.

Figures 15 are results of numerical simulations corresponding to the same
parameters as in figure 14.

A.2 Phase structure of the flows

We have computed the stable and unstable manifolds as for the map. The
results are shown in Figures 16 (see figure 3 of section 4 for a summary).
Hereafter we provide the bifurcation values of h− c, denoted by µi, together
with the qualitative descriptions of the nature of the bifurcation:

• µ1 = λ1 = −4.0971. As in the parallel case, a saddle node bifurcation
occurs at h− c = µ1 and produces a saddle H− and a source X−.
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Figure 15: Examples of trajectories of a simulated system (N = 1000), starting
from different initial conditions, corresponding to the maps of figure 14.
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Figure 16: The stable and unstable manifolds for the flow for h−c = 3.7 (Compare
with figure 14 with the same value of h− c). At h− c = −3.6, a sink O− together
with an unstable limit cycle Cu have emerged from the source X− through a Hopf
bifurcation. At h − c = −3.46 a separatrix bifurcation has eliminated Cu and
expanded the basin of attraction of the sink. At h − c = −3.3, H+ and O+ have
been created from a saddle node bifurcation on η+

1 (G) (Compare with figure 14
for the same value of h − c). For h − c = −3.1 a final saddle node bifurcation
has annihilated O′

+ and H+ (compare with Figure 14 for the same value of h− c).
Notice that the figure on the bottom (right) shows a cycle that arises for other
parameters c and d.

30

ha
l-0

03
49

64
2,

 v
er

sio
n 

1 
- 3

 J
an

 2
00

9



• µ2 = −3.6172. A Hopf bifurcation occurs at h− c = µ2 and produces
an unstable limit cycle Cu together with a sink O− from the source
X−. The basin of attraction of O− is the area surrounded by Cu. Note
that we’ve been able to choose h− c such that the sink remains in the
negative branch, which implies that variation of η with respect to h−c
does not always qualify to determine the stability of the fixed point.

• µ3 = −3.4980. A separatrix bifurcation of the stable and unstable
manifolds of H− eliminates Cu.

• µ4 = λ2 = −3.4201. A saddle node bifurcation occurs at h − c = µ4

and produces a sink O+ and a saddle H+.

• µ5 = λ6 = −3.1146. A saddle node bifurcation occurs at h−c = µ5 and
annihilates the saddle H+ and the source O′

+. The topology persists
for larger h− c.

Thus, we have the same types of bifurcation as in the parallel case, and
Peixoto’s Theorem ([17] Theorem 1.9.1) indicates that these are the only
types of bifurcation expected in a two-dimensional flow system. However,
let’s note that the overall topology of the dynamics depends strongly on
their order of occurrence. For example, if the separatrix bifurcation happens
before the Hopf bifurcation, a stable limit cycle can be created just like in
the parallel case (see the figure at the bottom (right) of figures 16).

31

ha
l-0

03
49

64
2,

 v
er

sio
n 

1 
- 3

 J
an

 2
00

9


