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Summary. In this paper three types of system analysis are considered at a con-
ceptual level which are relevant for decision making, namely: (a) breakdown in con-
nected transport or other networks, when a change in modelling may be needed dur-
ing critical transitions; (b) systems with dynamical boundary processes in smooth
and sudden transitions; (c) critical transitions and sensitivities of the throughput
and behaviour of systems depending on the relation between their ‘speeds’ of oper-
ation and response to external influences.

1 Description of General Systems Dynamics (GSD)

Natural and artificial entities, or systems, from molecules all the way through
to whole societies, consist of many disparate elements operating simultane-
ously but with some level of connection between them [1]. In models of many
environmental, engineering, social and economic/financial systems [2] a choice
is made between statistical and quasi-deterministic methods. But an exclu-
sive choice between these two approaches may not be necessary [3]. For ex-
ample, in seasonal weather forecasts (www.metoffice.gov.uk) the two methods
are currently used simultaneously. Some applications are described below for
the conceptual application of a systems approach in making critical decisions
particularly when systems are undergoing significant transitions. They can,
perhaps, guide us how to operate systems so as to minimise the adverse effects
of external or unexpected internal influences.

2 Applications of GSD for critical decisions

Breakdowns in connected networks: Studying patterns of restricted
paths in idealised mathematical networks is a powerful method of studying
the operation of real and virtual networks. They are particularly revealing
when elements of the networks are changed, for example, by disruptions or
improvements.
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Following Euler, the key quantity describing paths is the connectedness
matrix Aij between n nodes, the magnitude of whose elements define the
quality of the connection (or lines), e.g. probability between 0 and 1, between
nodes i and j. For example, this defines the total number of significant con-
nections Ni at node i (the sum of all the values of j for which Aij 6= 0 and
i 6= j ). Consider the effects of Nb breakages in the connections of the network
(see fig.1). An assumption has to be made about whether the nodes at either
ends of the broken connections also fail. If each of these has an average of
< Ni > connections (e.g.=5 for central London tube nodes), it means that
the total number of connections affected is about 2Nb < Ni >. So a certain
number of deliberate or accidental breakages (disconnections) can affect a high
proportion of the central part of a network [4].

Fig. 1. Breakdown in connected networks-showing the effect of a few disconnections
near nodes in a main network (e.g. underground) diffusing into other networks (e.g.
surface transport).

However, the operation of the underground network with a finite number
of high capacity lines is closely connected to a much larger more diffuse net-
work, consisting of surface transportation and walkers etc. There are parallels
with movement of oil and water through porous rock and through connected
cracks in the rock, or urban networks of fractured water mains. For planning
changes, responding to breakdowns, one form of simplification is to reduce the
complexity the networks to fewer edges by averaging over many elements.

Or in a city with dense transport networks we represent the movement of
people as a diffusive flux Fp equal to the spatial variation (or ‘gradient’) of the
number of people per unit area, and the diffusivities of the coupled networks
D1 and D2 for flow. These diffusivities vary greatly across the city especially
with breakdowns. The variations of the fluxes depend on local sources and
sinks in the network (i.e. the numbers of people entering and leaving unit
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area S, e.g. people entering or leaving activity areas (SA) and overwhelmingly
in emergencies by the movement of people away from areas of danger (SD) as
communicated and/or perceived. In dynamic situations the decision takers can
vary all these parameters through physical controls (e.g. road blocks reduc-
ing the value of D2) and communication. Simulations can solve the diffusion
equation and rapidly display results as different scenarios are tried.

Systems with dynamical boundaries: Many systems are defined in
relation to a finite physical, or non-physical, space which has boundaries (B)
(e.g. a static organisation such as a city, or moving human/animal groups, or
abstract boundaries, such as defined by ‘areas’ of activity and their scales in
businesses or academia). Just as with networks, analysis can provide guidance
about these systems when the boundaries and boundary processes undergo sig-
nificant changes - drawing on the recent general theories of complex evolving
and disrupting surfaces in turbulent fluid flow [5], and new concepts about
how flooding patterns can change [6].

Richardson first showed the power of applying these concepts to social
systems in his analysis of the frequencies of conflicts between nations, which
he correlated with the lengths L of the boundaries B that separated them
[7]. This led him to the famous conclusion that the smaller the scale l of the
wiggles of the boundary shape the greater the length, according to the fractal
relation L ∝ [l]−d, where 0 < d < 1).

Consider a space within a continuous closed boundary B (fig.2). Outside
B the key variable A, say, is A0. Inside B, A= A0 + ∆. This changes when
the surface undergoes severe disruption. With an evolving boundary, B moves
outwards at an average boundary (or entrainment) ‘speed’ Vb. In many cases
the boundary is porous, so that there is a flux of external ‘activity’ that crosses
B in proportion to the flux (entrainment) ‘speed’ Vf .

One class of confined system with evolving boundaries is where the activ-
ity within the boundary is changing as the boundary spreads and exchange
processes occur across the boundary. In other types of system ∆ protects the
system within B against an external activity A0, e.g. the reduced flood hazard
or lower wind damage in an urban area produced by deflection of water/wind
by the buildings, or the reduced threat or competition to people, animals
or organisations produced by joint defence against adversaries. In both cases
∆ < 0.

Within these boundaries, as the magnitude of the flux Vf of external ac-
tivity crossing B (e.g. of fluid flow or of external bodies) grows, the protection
within B might decrease (e.g. greater competition) or increase (e.g. economic
advantage of immigration) in proportion to Vf and inversely with the length
LB of the boundary. The number of exchanges between insiders and outsiders
would increase with LB and this might trigger conflict [7].

Above a critical threshold, typically defined by the external action Acrit,
the external and internal processes inter-mingle. Typically the mean differen-
tial activity ∆ decreases while the fluctuations A′ and flux speed Vf increase.
This might be associated with change in the activity within a fixed boundary
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Fig. 2. A system with dynamical boundary processes undergoing transitions. A
distortion and break up of the boundary produces large fluxes in and out, and large
fluctuation A′.

(e.g. water/wind flow rising to high enough levels within an urban area that
it becomes more hazardous inside B with infrastructure collapse than outside
B). Or changes occur associated with the shape of the surface B becoming
highly distorted as it breaks up into smaller areas each with surfaces denoted
by dashed line, e.g. as a diseased population spreads or as spatial systems (as
clouds and organisations break up).

These are also generic features of systems defined within multiple, inter-
acting boundaries, such as when they merge or split, which applied to flow
systems and adjoining nations [7].

Critical dynamics of system-processes affected by non-local in-
fluences: In many physical and non-physical systems there are various kinds
of throughput, Q say, which are made up of ‘movements’ or transfers of quan-
tities A (objects, activity, ideas etc). In changing conditions, the rate of ac-
cumulation always has to be considered at the same time as throughput. The
systems involve large numbers of moving and evolving elements, which may
include A and also extend beyond A, such as frameworks, external controls
etc. Typically the throughput is controlled by local interactions between el-
ements (as in transport/flow systems and in social organisations) and other
‘non-local’ influences or signals (Σ) coming from elsewhere in the system. Σ
can be considered to be distinct from the quantity A. But Σ may be affected
by large changes in A, such as when sudden changes and ‘shocks’ occur. A
system dynamics approach also has to take into account its response process
in order to estimate the speed (c) at which A is affected by the ‘signals’.

The processes of accumulation and throughput with varying external in-
fluences have characteristic patterns of gradual and sharp variations that are
common to many systems. Fluid flows provide a good example which show
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how similar behaviour occurs in different liquid and gaseous systems. These
concepts have already been used to analyse and control non-fluid systems.
In fluids non-local signals are waves moving with a speed c that in general
differs from the speed of the flow V , though it may be affected by the flow at
distant points. The equation for the change of A affected by the wave moving
in one dimension shows how any arbitrary ‘activity’ moves at speed c. In river
flows or on water surfaces, A could be the flow speed or the heights of waves,
and c is ‘wave’ speed at which the current changes or the wave height moves.
Its magnitude depends partly on the form of A, as well as on the particular
system. In gases, which are compressible, c is proportional to the density - for
air this is the familiar sound speed of 300 m/s, very fast compared to long
waves of 3 m/s in a typical shallow river.

Where the flow has a speed V < c, it responds immediately to the any
variations elsewhere in the system (e.g. along a river). However when the
critical ratio V/c (the Froude number for liquids or Mach number for gases)
exceeds 1, the flow is faster than the speed of the waves or signals from
elsewhere and are less dependent of non-local influences (e.g. what happens
downstream). The responses to influences are quite different to those in sub-
critical systems. Typically the throughput is locally obstructed (e.g. a fast
flow of traffic being blocked) followed by a sudden change in the local and the
overall flow occur, such as a hydraulic jump (a frothy wave on a stream) or
shock wave (in front of an aircraft) in which there are intense local agitations
[8]. Downstream of the ‘shock’, the river level rises, and in gases the density
rises as in traffic density (‘waves’) on highways. As is well known there is a
bumper-to-tail slow flow where V/c < 1 and free flowing supercritical traffic
where V/c > 1. As V/c increases, the throughput of traffic increases gradually,
as the traffic responds to non-local influences e.g. controls or obstructed flow.
This understanding has led to traffic controls that maximise Q and reduce
the chance of large waves or shocks, by ensuring that V/c is below its critical
value. The patterns of mass movements of people in streets and buildings have
many of the same smooth/shock transitions, often with deadly results.

There are also social and intellectual systems with non-local influences
where the variation of throughput Q have similar characteristic variations
depending on the relation between the speed at which the system operates (V )
and the speed (c) with which information is considered or at which changes
to the system propagate through it. For example, organisations in a sub-
critical mode (V/c < 1) operate smoothly, but probably not very sensitively, in
response to external and non-local influences. In a super-critical mode (V/c >
1), they have to respond quickly to external influences, but they are at greater
risk of the whole organisation experiencing sudden changes in its activity A,
that are similar to shocks in flow and traffic systems. These ideas might also
guide research into how individuals operate in the modern world where a
certain imposed ‘speed’ V is required to deal with their activities (which they
can choose to some extent). Their effectiveness is affected by how this imposed
speed V relates to each individual’s innate speed c of processing information
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and responding to external influences. Probably greatest contentment comes
from operating close to the critical ratio; they might also be one component
of happiness [9].

3 Conclusions

Wilson [10] has commented that science is rich in concepts that have wide
potential application through the methodology of complex systems analysis.
But detailed modelling and measurement can greatly increase the value of
system studies for decision making, because component models differ con-
siderably between different systems. However, there are some of the generic
issues of complex modelling that need to be discussed and teased out before
non-technical policy makers will begin to use systems thinking and techniques
more widely, and use the results intelligently.
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