The Science of
Complex Systems

John Finnigan explains how scientists are probing the complex interactions
that influence the behaviour of bushfires, cyclones, the stock market and even

electricity prices.

n northern Queensland, CSIRO

marine scientists are learning how

information networks based on
trust and reliability are built and evolve
between fishermen on the Great Barrier
Reef, and are using the dynamic behav-
iour of these “belief networks” to help
design marine protected areas.

In Sydney, engineers are designing a
“self-aware” skin for a future space-
craft that can sense when and where
it has been damaged by a meteorite and
repair itself.

A Melbourne-based specialist in
turbulent airflow is working with a Bris-
bane entomologist to reproduce the
ability of insects to track vanishingly
faint pheromone trails by simulating
the evolution of the insects’ motor
responses.

In Canberra, a theoretical ecologist
is using the rules of the children’s game
Rock-Paper-Scissors to demonstrate
why exotic species can sometimes take
over landscapes almost overnight after
years of living in balance with native
flora and fauna.

In Melbourne a consortiwm of econ-
omists and computer scientists are
simulating the behaviour of Australia’s
privatised electricity market to under-
stand the 1000-fold price oscillations
that occur from one 15-minute period
to the next.

These wildly different topics are all
aspects of a single CSIRO research
program. The link between them is that
they are all complex systems.

Self-organisation and
Emergence

Two properties set a complex system
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apart from one that is merely very, very
complicated: seif-organisation and
emergence.

Emergence is the appearance of
features that are not implicit in the
parts of the system. For example,
cyclones, tornadoes or weather
systems are emergent features of the
motion of air particles on the spinning
Earth, while recessions and booms are
emergent features of national
economies. ' »

Complicated artefacts like motor
cars or power plants also have emer-
gent features in this sense, so a further
property is needed to distinguish

complex systems. This is self-organi-.

sation, by which we mean that there is
no external controller or planner engi-
neering the appearance of these
emergent features. They appear spon-
taneously.

Probably the most pervasive
exarple of self organisation is biolog-
ical evolution. The 3.5 billion year
journey from simple blue-green algae to
the variety of life today as a result of
aeons of blind reproduction, mutation
and natural selection has required no
outside agency to guide it. After writing
On the Origin of Species, Charles
Darwin, a religious man who knew how
disturbing his ideas would be to those
who believed the Bible literally,
Jlamented: “What a devil’s chaplain 1

- would make”. Evidently, self-organisa-

tion and emergence are not new ideas!

What has led to the explosive
growth of interest in complex system
science in the'past decade is the reali-
sation that general laws and rules
governing these processes can be

Better understanding of complex systems
is enabling bushfire researchers to model
fire fronts and their speed of advance.

discovered, and that these apply equally
to the weather, society and life itself.

Local Interaction

A key feature of real systems that has
proved to be essential in the appear-
ance of rich emergent features is local
interaction. In other words, elements of
a system only interact with their neigh-
bours.

If we are studying a disease like
AIDS or flu in a population, it makes
sense to consider transmission
between members of a social group;
that is, the people who actually get
close enough to be touched or sneezed
upon or have sex together. Swprisingly,
however, standard models of disease
spread make no such assumption and
deal instead with well-mixed popula-
tions where everyone can potentially
contact everyone else.

The differences between the theo-
retical behaviour of epidemics in the
two situations can be profound. When




only local interactions between
members of social groups are consid-
ered, diseases that would die out
according to the well-mixed model
persist indefinitely at a low level and
can spawn new outbreaks when condi-
tions are favourable,

Similar problems bedevil economic
theories. The neoclassical economist’s
model of the market involves players
who have perfect knowledge of what
everyone else in the market is doing
(as well as assuming that all players
behave perfectly rationally, which is
another story). New, more realistic
market simulations, where players have
only limited knowledge of the behav-
iour of prices and bids, reproduce real
markets much better and yield market
performance that is very different from
the optimum efficiency of resource
allocation that economic fundamen-
talists assert as an act of faith.

The emergent features of financial
markets are the coherent changes in
prices that result spontaneously from
the individual buying and selling of the
players in the market. Like the emer-
gence of weather systems from the
local interactions of air particles or of
epidemics from contact between indi-
viduals, the scale of market booms and
busts is orders of magnitude larger than
the local trades that combine to cause
them.

Local interaction is so obviously a
feature of real systems that it is fair to
ask why it has taken so long for its crit-
ical nature to be recognised. The
reason is that mathematical solutions
for such systems are fiendishly diffi-
cult to find. Theoreticians have concen-
trated instead on approaches where
average properties are assumed to
stand for all the diverse assembly of
players.

Cellular Automata

Two of the critical ideas that were even-
tually to undermine this complacent
picture were planted as long ago as the
1960s by the brilliant Hungarian math-

ematician, John von Neumann. As well
as being influential in the design of the
first practical digital computers, von
Neumann invented cellular automata.

Imagine a giant chess board with
only white squares. Now colour a
random selection of squares black.
Next, stipulate a set of rules that govern
whether any square will turn black or
white according to the colour of its
neighbouring squares. Finally start the
clock ticking and at every time step
apply the rules. What you will find, for
some choices of rules, is a constantly
changing pattern of black and white
squares, with complex extended motifs
that span many squares appearing
repeatedly and moving across the
board.

One example of what I have
described is the computer-based “Game
of Life”. This is a two-dimensional
cellular automaton because it is played
on a two-dimensional surface, but
celiular automata of any number of
dimensions can be designed and simu-
lated on a computer. It is in specifying
the rules that cause a square to change
colour according to the colour of its
neighbours, and in specifying which
squares are to be counted as part of
the neighbourhood, that we are able to
model a huge range of real-world situ-
ations as cellular automata.

A situation where cellular automata
have found ready application is bush-
fire modelling. A black square repre-
sents a part of the landscape that is
already burning while the rules encap-
sulate empirical knowledge of how the
fire spreads. For example, the proba-
bility of igniting a neighbouring square
will increase if several contiguous
squares are already burning because
temperatures will be higher, fuel in
nearby squares will be heated by radi-
ation and there is a greater possibility
of burning embers being lifted aloft in
buoyant air currents and blowing side-
ways. What bushfire researchers are
interested in is reproducing the self-
organising shapes of fire fronts and

their speed of advance, which in
intense fires is controlled (in ways that
are only poorly understood) by the way
that flame fronts distort the airflow, by
the strength of the ambient wind and by
the fuel load and its flammability.

Networks

A powerful concept that extends the
simple neighbourhood structure of
cellular automata and brings us much
closer to natural systems is the
network. Almost all systems can be
represented as networks where the
elements of the system form the nodes,
and nodes are considered to be linked
if there are interactions between them.

Many physical systems like power
and water grids are clearly networks
but other less obvious examples are
also easily cast into this form. Ecolog-
ical food webs, for example, are
networks where the nodes are organ-
isms and a link between two nodes
represents one eating or being eaten
by the other. Social groupings — from
families to companies to whole soci-
eties — can also intuitively be seen to be
networks. What flows across the links
of these networks can be materials,
energy or information, including
emotions like love and trust.

The advantage of viewing systems
as networks is that much of their
behaviouris determined by the pattern
or topology of the network linkages
rather than what passes across the
links. At first this seems a surprising
idea but research, especially over the
past 5 years, has shown it to be true.
Scientists can deduce a great deal
about how a system will behave by
observing its network topology. In
many cases, particularly in social
networks, it is much easier to deter-
mine the network topology than to
discover in detail what is happening
across the links, let alone to model it
mathematically.

The first steps in studying the prop-
erties of networks (or graphs, as math-
ematicians term them) were taken in
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the 18th century, but results were
confined to the simple case of regular
lattices, where each node has a fixed
number of links to adjacent nodes (as
in a fishing net).

A major advance occurred in the
1960s with the study of random graphs
by the Hungarians Erdos and Renyi. In
these networks, nodes are cormected at
random to other nodes, resulting in a
tangled pattern of connections. For
many years random graphs were

assummed to be good representations of '

real networks like social systems or
food webs, but that view has been
turned on its head in the past decade or
so. Now it is realised that the network
structure of most systems observed in
nature lies midway between, being
more disordered than regular lattices
but more structured than random
graphs, '

A topology that is observed over and
over again in systems that grow by
accretion — like living organisms, social
groups or even artefacts like the world
wide web — is the so-called scale-free
network, where some nodes have many
links, many nodes have very few links
and others lie in between so there is
no clear average number of links per
node. The dynamics of such structures
are very resilient to random removal
of links or nodes as there is little like-
lihood that any particular link is crit-
ical. However, these scale-free
networks may break into a set of
disconnected segments if the most
connected nodes are targeted.

Protein—protein interactions in cells
occur on a scale-free network, making
the cell robust to accidental damage to
its proteins either by environmental
toxins or DNA ftranscription mistakes.
On the other hand, modern society
depends on the interdependent infra-
structures of power, water, telecommu-
nication, finance and government, which
may also have a scale-free structure that
is vulnerable to accidental damage to
critical nodes by natural disasters or
targeted attack by terrorists.
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Cyclones are emergent features of the
motion of individual air particles.

Interestingly, network theory tells
us that the drive to make systems like
power grids and company organisa-
tions as lean and efficient as possible
often produces a network structure
that leaves them vulnerable to cata-

~ strophic failure in the event of minor

unforeseen mishaps. In such systems,
managers may have the illusion that
they are in control but the results of
management intervention are often
unpleasantly counterintuitive and
surprising. In fact, these systems are
self-organising and no one is in control.
We see the consequences of this all
around us from the environmental and
social side-effects of well-intentioned
environmental controls to the booms
and recessions in our economies.

One area that is being profoundly
affected by these new ideas is the
modelling of societal and economic
behaviour. By stipulating rules of indi-
vidual behaviour and patterns of
connections between individuals and
their environnient, researchers are
modelling whole societies. A priore
assumptions of the way large groups
behave become superfluous; instead
this behaviour emerges as the simula-
tions proceed. The resulting computer
models are reshaping our under-
standing of social and economic
processes as well as phenomena like
societal resilience and collapse.

For example, researchers at the US

Department of Energy in Chicago have
combined with the University of
Chicago’s School of Oriental Studies
to simulate the trajectory of ancient
Mesopotamian society from the indi-
vidual household to the city state, and
are comparing it with the 3000-year
historical and archaeological record.

In another time and place, CSIRO
researchers are modelling the social
and biophysical behaviour of selected
Australian farming communities to
understand the combination of ecolog-
ical, economic and social forces that
have produced phenomena like dryland
salinity. An immediate practical
outcome of such research is design
rules for robust social organisations.

A less serious application of these
“agent-based” models is in entertain-
ment. The massive battle scenes in
recent epics like The Lord of the Rings
were created by endowing individual
simulated fighters — elves, orcs and men
— with characteristic behaviours and
then letting them interact in a virtual
landscape.

Australian research in complex
system science started with a few indi-
vidual pioneers in universities. The
CSIRO Centre for Complex System
Science, a virtual operation spanning
most of CSIRO, commenced operations
in 2002. It was quickly followed by two
Australian Research Council-funded
Centres of Excellence. Other Australian
universities have followed a growing
world trend by setting up complex
system science departments around
their existing interests, and last year
12 of these linked up with the CSIRO
Centre and two overseas universities

.in an ARC-funded Research Linkage

network. Other government research
laboratories, notably the Defence
Science and Technology Organisation,
also now have significant resources
devoted to this field, which is undoubt-
edly one of the most rapidly growing
fields of science worldwide.

John Finnigan is Director of CSIRO's Centre for Complex
Systems Science.




