

Political feasibility and the role of institutions (or simply: 'the undetermined taxman')

Bekkjarvik Climate Workshop, June, 2009

Gunnar S. Eskeland, NHH

What is the difference between ignorance and indifference?

(I'll argue that our traditional position, allegiance to the polluter pays principle, can be salvaged only by a combination of ignorance and indifference)

(did anyone discover I tricked you here?)

Economics:

- <u>Classical</u>: distribution and efficiency *jointly* determined
- <u>Neoclassical</u>: tricks allowing separation of distribution and efficiency: benevolent planner, costless transfers, efficient negotiations, Hicksian compensation
- <u>Modern micro-theory</u>: asymmetric information => tradeoff between efficiency and distribution
- <u>Institutional economics</u>: A government successfully or optimally constrained from expropriation?

Neoclassical: Externality: quota & tx equivalent

Full Polluter Pays Principle (FPPP)

Appraisal and political feasibility

- Who gains, who loses
- Who influences policy, how
- How do combinations of policy instruments come about
- Focus on transition

Nature's game: surprize!

- Horse manure in London: from 'no problem' to 'fix it'
- Acid rain in Europe (or North Eastern US); from 'no problem' to 'fix it'
- Lead in gasoline: From 'no problem' to 'fix it'
- Carbon dioxide emissions: From 'no problem' to 'fix it'

In the long run: Zero emission vision!

Electricity generation:

- 1. Long lived assets
- 2. Greenhouse gases: Some plants 'polluting', others not
- 3. Costly emission reductions:
 - o Obsolescence
 - New capacity (and costlier)
 - o Capacity utilization
 - o (Political costs)
- 4. Limited trade (in and out of Europe, say), limited substitution possibilities

Marginal costs at various CO2 prices - baseline

Stakeholders:

- electricity producers
- households and services and other users
- electricity intensive industries
- (other energy and emission intensive industries)

An electricity producer: profit function

$$\pi^{h}(p_{e}, w, t_{g}) = \pi^{h}(p_{e}(t_{g}), w, t_{g}) =$$

$$p_{e}(t_{g})f^{h}(x^{h}(p_{e}(t_{g}), w, t_{g}) - \sum_{j} w_{j}x_{j}(p_{e}(t_{g}), w, t_{g}) - t_{g}g^{h}(x(p_{e}(t_{g}), w, t_{g}))$$

$$\frac{\partial \pi^h}{\partial t_g} = y_e^h \frac{\partial p_e}{\partial t_g} - g^h$$

$$\frac{\partial \pi^h / p_e y_e^f}{\partial t_g / t_g} = \xi_{pe,tg} - \frac{t_g}{p_e} \frac{g^h}{y_e^h}$$

Political feasibility: NHH A focus on current assets

Emission taxes: take profits only

100% %share

Until they raise prices, and/or induce abatement

So: huge transfers, before any environmental transformation of sector...

- Political feasibility I: the use of cross-subsidies
- Political feasibility II: the distribution of quotas for free
- Political feasibility III: energy efficiency programs (and other targeted programs)
- Political feasibility IV: far-reaching technological change

		Cap-and-trade, or emission tax regime	
		No	Yes
Technology, R&Dcooperation regime	No	- No climate policy	Pro: - Cost effective. Con: - Likely to have low participation Weak on long term mitigation.
	Yes	 Pro: Seeks long term carbon-lean solutions. Some R&D can be done by country or small coalition. Some climate friendly tech. R&D justified by other objectives: energy security, environment, etc. Con: R&D program alone likely weak on direction, implementation and adoption, since incentives fail 	Pro: R&D strengthens long term dimension of tax- or cap-and-trade system. Technological advances will reduce political resistance to mitigation. Cap-and-trade improves direction and efficiency of R&D. Thereby also broadens participation and deepens emission reductions. Con: Multiple treaties may make for complex negotiations

Policy instruments review:

Qualifying dimensions:

- 1. Is instrument *neutral*, across abatement opportunities
- 1. Does instrument make *polluters pay*, FPPP
- 1. Does instrument stimulate future emission reductions, as much as present (i.e. tech r&d, future periods, etc)?

Instrument review, findings, all ctries

- 1. Emission trading system (part of economy, allocation, time)
- 2. Support for renewables: usually cross subsidies
- 3. Support for energy efficiency: varied, straight subsidies
- 4. Support for R&D: very low, it seems (judgement call)

Result: a) + b) (and c) implies lower prices for emissions and emission intensive goods (and services: electricity).

We believe a major weakness in today's approach to GHG is too low attention to farreaching technological change

Free quotas: a price to make change politically acceptable? An acceptable price?

- Literature: Yes: free quotas compensate the regulated population (power producers)
- Buchanan and Tullock, 1975: the penalty tax ...will be viewed as confiscatory...
- Literature: in practice (Burtraw et al, 2006, the US): free allocation of emissions allowances can dramatically overcompensate the electricity industry...
- Harstad & Eskeland: gratis threatens tradability result
- Conclusion: expectations, and long term

The distribution of costs:

- Depends entirely on instrument choice
- History speaks:
 - Established capital is barely challenged
 - o Freely distributed quotas as a way to change the world
- Electricity sector as example
 - Free quotas to old and to new: reasons and consequences
 - o Green certificates etc: Tax and cross-subsidize
- Future speaks:
 - o Free quotas
 - Border tax adjustments
 - o CPP?

Refrain, in findings

- Resistance to raising prices, of emissions and of products (electricity, say), to level indicated by FPPP.
- Multiple instruments, distributive effects seem driving

Conclusion

- Conclusion:
- Eccs of pollution control changes when emphasis is on transition, not statics
- The position that capital cannot be taxed reitereated, but from another angle?
 - Old and tautological: because consumption is end, only consumption can give
 - Old, important: with capital mobile and supply curves horizontal, capital cannot be taxed
 - o Here: because capital is rigid and sunk, it will be respected, not taxed

Towards future research

- One observation is that energy prices will not be as high as textbook claims, and recommends
- From this, an observation is that energy efficiency and energy R&D need special attention (and policies)
- We conclude (Knut Alfsen and I) and recommend; R&D treaty (we show that it is mutually supportive of instruments such as cap&trade, not alternative to, or in competition with)

So, proposal is:

- Study sectors in transition
- Technological potential
- Innovation and R&D
- Durability of capital
- Political resistance
- Constitutional restraint

Proposal, cont'd

- Maritime shipping
- Aviation
- Rest of transport,
- Electricity
- 'Urban', buildings
- Cement
- Fertilizer
- Buildings
- Metals

My take on this

- Either R&D in general, or
- Maritime transport,
- Or buildings, urban, mobility

Proposal cont'd

- Where can technological change come from (in particular: if not from high expected emission prices)
- How can R&D be 'distributed', instigated
- Role of finance, of trade and perhaps of norms.
- Thanks!!

Equilib

- Total number of permits: p > v
- More permits to high-cost firms

Allow T

