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Abstract

We propose a functional framework for studying dynamical models of exchange economies
and argue that – in comparison to standard descriptions – a functional framework has a
number of advantages: 1) it allows to express precisely the relationships between the classical
notion of general equilibrium and agent-based models of exchange economies; 2) it provides
computational description of models of exchange economies which can be unambiguously
implemented; 3) it supports the numerical investigation of models of exchange economies
by providing a specific set of notions and computational primitives. These can be used to
precisely formulate numerical conjectures and to unambiguously setup “crucial” numerical
experiments.

We apply the framework to the investigation of a simple model of exchange economies
in which multiple equilibrium prices coexist and prices evolve according to a simple trading
scheme and to a generic genetic rule.

1 Introduction

1.1 Preliminaries

The idea of exchange economies has been at the core of economic modeling at least since
Walras [13]. In such economies, a number of economic actors own certain quantities of goods.
Goods have different types and can be freely exchanged between actors. Good prices emerge
as ratios at which goods of a given type are exchanged for goods of another type.

The most influential mathematical formulation of this idea was probably the notion of general
equilibrium proposed by Arrow and Debreu in [4]. We rehearse this notion in section 3.

While influential, the notion of general equilibrium as a mathematical model of exchange
economies has been confronted with a number of criticisms.

One criticism has been that the notion of general equilibrium relies on modeling assump-
tions which are not supported by empirical evidence, see for instance Kahneman’s criticism
of the “individual rationality” assumption in [11].

Since the Sonnenschein-Mantel-Debreu “anything goes” result [19], the usefulness of the
notion of general equilibrium for decision making and policy advise has been authoritatively
questioned, see e.g., TODO: add references.

Also the intrinsic incapability of the model to describe dynamic processes such as business
cycles has been criticized.
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While some criticism might originate from a genuine confusion between a model and its
application1, it is certainly true that the relationships between the mathematical theory of
general equilibrium and “real” economies are tenuous and that the application of such theory
to, e.g., computational models for decision making and policy advise is not straightforward
and is in many ways questionable, see [5].

In the last two decades, a number of alternative formulations of the idea of exchange
economies have been proposed as computer-based models [2]. More recently, so-called agent-
based models of exchange economies have been proposed, see [20]. While a precise, estab-
lished notion of agent-based models is lacking, there seems to be some shared understanding
that agent-based models are particular computer-based models. H. Gintis, for instance,
maintains that agent-based models are computer simulations of certain games, see [8], page
2.

While computer-based models and, in particular, agent-based models of exchange economies
have been applied to the simulation of “real” economies with some success, see [20], their
usage in critical applications such as decision making and policy advise is still uncommon.

1.2 Computer-based models, exploratory programming

When considering computer-based models it is useful to distinguish between models which are
developed to solve well defined problems and models which are obtained through exploratory
programming [18].

Examples of the first class of computer-based models are often found in scientific computing
end engineering. Here, the problems to be solved are often well understood and can be stated
precisely. Computer-based models deliver (usually approximate) solutions to such problems.
The accuracy of such solutions can be measured without resorting to empirical data. The
availability of well defined problems allows model developers and implementers to design
crucial experiments. These are experiments for which a negative outcome unambiguously
indicate errors in the model or in its implementation.

As an example, let r2 ∈ Real×Real×Real→ Complex be a program which implements
a computer-based model for finding roots of quadratic equations of the form ax2+bx+c = 0.
A suitable requirement for r2 could be

∀a, b, c ∈ Real, a 6= 0 : y = r2 (a, b, c) ⇒ |ay2 + by + c| <= ǫ (1)

where ǫ ∈ Real is a suitable residuum upper bound. Conversely, a tuple a∗, b∗, c∗ ∈
Real, a∗ 6= 0 for which |a∗y2 + b∗y + c∗| > ǫ where y = r2 (a∗, b∗, c∗) would unambigu-
ously indicate that r2 does not fulfill the requirement (1). This leaves two possibilities open:

• r2 is a wrong implementation of a correct computer-based model for finding roots of
quadratic equations of the form ax2 + bx + c = 0.

• The computer-based model for finding roots of quadratic equations of the form ax2 +
bx + c = 0 is not correct.

Of course, we can rule out the second possibility by choosing a method for finding roots of
quadratic equations which has been proved to be correct.

1we maintain that few mechanical engineers would criticize the notion of equilibrium of forces on the basis
of its failure to describe the dynamics of rigid bodies. At the same time, few mechanical engineers would feel
comfortable traveling in an airplane whose wing structure has been computed solely on the basis of static loads
analysis.
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In programming, requirements like (1) are often called specifications. In the example
above (1) is a specification for computer-based model for finding roots of quadratic equations
of the form ax2 + bx + c = 0. The example makes clear the following remarks:

1. When considering computer-based models which are designed to solve well defined prob-
lems, it is useful to distinguish between three notions: the specification, the computer-
based model and its implementation.

2. Specifications can be expressed in a clear mathematical notation. They are often writ-
ten in terms of equations. Often such equations play a prominent role (in the problem
solved by computer-based models which fulfill that specification and expressed by the
specification itself) and are given special names like problem equations, governing equa-
tions, governing laws.

3. Though expressed in mathematical terms, specifications necessarily rely on notions and
values which can depend on the computing architecture: in (1), for instance Real rep-
resents a (computing architecture dependent) set of floating point numbers. The upper
bound ǫ is a value which also meaningfully depends on the sets Real and Complex.

In many cases it is convenient to trade accuracy of specifications for intuitiveness and
replace (1) with

∀a, b, c ∈ R, a 6= 0 : y = r2 (a, b, c) ⇒ ay2 + by + c = 0 (2)

This is the approach taken throughout this paper. Notice, however, that (2) is just
a suggestive, convenient replacement for the original specification (1). Crucial experi-
ments and proofs of incorrectness have to be based on this specification.

4. Computer-based models are often expressed in algorithmic form using pseudo program-
ming languages [1]. These are more difficult to read and analyze than specifications but
still more readable than implementations. Implementations are written in programming
languages. Imperative programming languages, e.g. C, C++, FORTRAN, Java, trade
understandability for efficiency: the lack of referential transparency makes reasoning
on implementations difficult and error-prone. Functional programming languages, e.g.
Haskell [6], close the gap between computer-based model descriptions and implemen-
tations and support model analysis, e.g. via equational reasoning. For most realistic
applications, however, the run-time efficiency of functional languages is unacceptable.

5. Ideally, developers of computer-based models would like to derive, possibly automati-
cally, computer-based models implementations from their specification. Alternatively,
they would like, at least for critical applications such as air traffic control, financial
markets, policy advise, to prove that actual implementations are correct i.e. they fulfill
their specification. These goals are often too ambitious for complex computer-based
models. A realistic alternative is to implement computer-based models by combining
software components which are themselves correct or, at least, by combining software
components for which crucial experiments in the sense made clear above can be set-up
straightforwardly.

Computer-based models of exchange economies and, in particular, agent-based models are
often developed through exploratory programming.

Exploratory programming, sometimes also called software prototyping, is often adopted
in domains which are not well understood or when it is not clear which software components
might be needed for (non-exploratory) implementations.

Implementations of computer-based models obtained through exploratory programming
are not designed to solve well-understood problems and do not rely on precise specifications.

3



They are not primarily developed for application purposes, at least not for critical applica-
tions. Because of the lack of specifications, empirical data often play an important role in
guiding exploratory programming.

Exploratory programming is, in the development cycle of computer-based models, an
activity with a limited lifespan. It is adopted during the first development stages and its
primary goal is that of gaining a better understanding of the problems involved and to derive
precise specifications. These are, in turn, the pre-conditions for the next development cycle:
re-factoring.

Re-factoring on the basis of well-understood problem and precise specifications is a pre-
condition for using computer-based models in critical applications.

1.3 Motivation

In this paper we propose a functional framework for describing and specifying dynamical
models of exchange economies.

Our work has been largely inspired by two papers of Herbert Gintis, [8] and [9]. The first
paper is remarkable in at least two ways. First because the author provides, together with
a mathematical description of an agent-based model of exchange economies a simple, un-
derstandable implementation. Second because the model implemented does not correspond,
according to our understanding, to the mathematical description.

We turn back to model in some detail in section 5 but let us make very clear that we do
not intend to raise any question about the correctness of the implementation made available
in http://people.umass.edu/gintis/ or of our understanding of it. As explained in the
previous section this question is, in absence of precise specifications, fruitless.

Instead, our main goal is to address the question of how to describe and specify computer-
based models of exchange economies in a language which is more accessible to non-programmers
then program listings and yet less ambiguous than mathematical descriptions like the one
presented in [8].

The functional framework proposed in this paper is a tentative answer to this question.

A second motivation for our work has been the Lagom GeneriC developed at the Potsdam
Institute for Climate Impact Research in view of applications to the German economy, see
[10] and [14].

Lagom GeneriC is an agent-based model inspired by the model presented in [9]. It has
been developed through exploratory programming in the sense discussed in the previous
section. The functional framework proposed in this paper has been conceived to assist the
development and, in particular, a re-factoring of Lagom GeneriC. Our goal is to provide
specifications for Lagom GeneriC components which can be studied, implemented and val-
idated in isolation. An example of such a component is the trading scheme presented in
section 4.5.

1.4 Outline of the paper

The paper is organized as follows: in section 3 we introduce the notion of a system of nA

agents and nG goods. We formulate the classical notion of general equilibrium in a functional
framework and introduce a particular class of time-dependent models of exchange economies.
This is the class of models considered throughout this paper.

Section 4 is devoted to the modeling of trade processes. We introduce the notions of
transition function, flux functions and trade schedule and show that models of stocks ad-
justment driven by trade processes can be written as folds of elementary bilateral trades on
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random trade schedules. In turn, elementary trades are essentially defined in terms of offer
and demand functions and trade schedules are defined by random events. We propose precise
specifications for elementary trades, offer and demand functions and for random events and
we show that, under reasonable demand functions and for fixed prices, one can define stocks
iterations which converge towards equilibrium stocks.

In section 5 we investigate numerically the dynamics of a trade-based stocks adjustment
process nested in a genetic algorithm for prices. The coupled system is of the kind described
in [9]. In contrast to the results shown there, however, the system appears to allow a much
richer dynamics: depending on the number of goods, the mutation factor of the genetic
algorithm and on the initial data we observe convergence towards stochastically stable prices,
limit cycles or price divergence. We formulate a numerical conjecture about the dynamic of
prices and discuss the outcome of a number of crucial experiments designed to falsify this
conjecture.

Preliminary conclusions and outlook are discussed in section 6.

2 Notation

Throughout this paper we mainly consider finite sets and finite functions. We represent
whatever finite sets of m elements with the zero-based interval of natural numbers {0, . . . , m−
1} and denote this interval by [ 0, m ).

For example, we describe a set of m points in R through a function x ∈ [ 0, m )→ R or,
equivalently, x ∈ R

m. While the first notation is more used in computing science, the second
one is quite common in engineering and economics. Similarly, we use

y ∈ [ 0, m )→ ([ 0, n )→ R) or y ∈ (Rn)m

to denote a function of two variables with obvious extension to the case of three or more
variables. Whenever there is no risk of misunderstandings, we write x ∈ R

n×m and x ∈
[ 0, m )→ [ 0, n )→ R instead of the above expressions.

We denote function application by juxtaposition, following a common usage in category
theory where “evaluation is a kind of composition” ([12]): y i ∈ R

n is the i-th coordinate of
y and y i j ∈ R the j-th coordinate of y i.

3 Static models, equilibrium, dynamic models

We consider models of exchange economies which are based on the notion of a system of
nA economic agents and nG goods. Depending on the kind of model considered, the system
might be described by different sets of functions. We say that these functions describe the
state of that system.

3.1 Static models, equilibrium

In static models, the state of each agent is solely described by a point in a nG-dimensional
space of goods. Thus, the state of all agents can be represented by a function x ∈ R

nG×nA .
We say that x i is the stock of the i-th agent. The total quantity of the j-th good present in
the system is

∑i<nA

i=0 x i j.

In static models of exchange economies, equilibrium is a relation between three functions.
Given x0 ∈ R

nG×nA and u ∈ [ 0, nA ) → R
nG → R, x ∈ R

nG×nA is in equilibrium if there
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exists p ∈ R
nG such that

∀ j ∈ [ 0, nG )

i<nA
∑

i=0

x i j =

i<nA
∑

i=0

x0 i j (3)

∀ i ∈ [ 0, nA ) x i ∈ argmax
y·p ≤ (x0 i)·p

u i y (4)

∀ j ∈ [ 0, nG ) p j ≥ 0 (5)

In equation (4), y · p represents the scalar product between y and p

y · p =

j<ng
∑

j=0

(y j) (p j) (6)

and argmax is an agent-specific set. For the i-th agent, this set contains all stocks that
maximize the utility u i subject to the constraint y · p ≤ (x0 i) · p.

We say that p j is the price of the j-th good and y · p the value of the stock y according
to p; x0 are the initial stocks of the system; u is the utility profile of the agents and u i the
utility function of the i-th agent. The equilibrium stocks x i are obtained by re-allocating
the total quantities

∑i<nA

i=0 x i among the nA agents, see equation (3). This is done in such
a way as to maximize the utility of each agent under a budget constraint, see equation (4).
The budget constraint requires that, for every single agent, the value of its equilibrium stock
according to the prices p does not exceed the value of its initial stock.

The theory of general equilibrium uses fixed-point theorems to provide sufficient conditions
for an equilibrium to exist, see [4]. While existence is granted under fairly general conditions,
uniqueness requires very restricting conditions, see [15].

A prominent example of a utility function which supports multiple equilibria is one pro-
posed by H. Scarf in [17]:

u i y = min
j∈[ 0,nG )

(y j) / (w j) (7)

where the vector of utility weights w ∈ R
nG is collinear with the total quantities:

w = λ

(

i<nA
∑

i=0

x0 i

)

∧ λ 6= 0 (8)

Under these conditions, any arbitrary strictly positive vector of prices p ∈ R
nG defines the

equilibrium state

x i =
(x0 i) · p

w · p
w , (9)

see Appendix 1.

3.2 Dynamic models

In dynamic models of exchange economies the state of the system or part of it evolves in
time. In this paper we only consider time-discrete dynamic models. For such models, the
time-dependent components of the system’s state can be represented by functions on natural
numbers. For instance, the time-dependent stocks can be represented by

x ∈ N→ R
nG×nA .
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We say that x t ∈ R
nG×nA are the stocks of the system at time t. The difference x (t+1)−x t ∈

R
nG×nA is called a stock transition. We are interested in dynamic models of exchange

economies in which:

• The state of the system is given at t = 0. For t > 0, the state of the system can be
computed by iterating a state transition function.

• Transition functions take as arguments the present the system’s state (stocks, prices
and and possibly other state variables), a random variable but neither time nor the
next state.

• Transition functions are computed by composing elementary transitions. Elementary
transitions are transitions in low-dimensional subspaces of the state space: they repre-
sent idealized economic processes, e.g., goods trading, production, consumption involv-
ing a (small) number of agents independent of nA.

Examples of state transitions which fulfill these rules are the “barter pairing process” de-
scribed in [8] and bargaining games, see [16], [7]. In the barter pairing process, pairs of
agents interact by exchanging 2 goods in a fixed system of “private” prices. The exchanges
are computed by a simple mechanism on the basis of certain “demand” and “offer” functions.

Because the development of dynamic models of exchange economies is heavily based on
heuristic, possibly application-specific rules, it is particularly important to anchor such mod-
els on some firm, common ground. This is provided by the notion of equilibrium. The idea is
that dynamic models which are solely driven by goods exchange processes should converge,
for constant prices and is a sense made precise and verifiable by a specification, towards
equilibrium stocks.

In the next section we introduce such specification. We construct a particular class of tran-
sition functions that fulfill that specification. This is based on folding elementary bilateral
trade transitions on certain random events. We investigate the asymptotic behavior of se-
quences of state transitions with numerical experiments and argue that our implementation
fulfill the specification.

4 Stocks dynamics: trade-driven models

4.1 System

We consider dynamic models of exchange economies of the kind proposed in [8]. In such
models, the state of each agent is described by a stock of positive goods and by three
additional variables.

The first one is a vector of nG strictly positive prices, one for each good. In contrast
to the prices introduced in section 3 in defining the notion of equilibrium, prices here are
agent-specific. They are sometimes called private prices.

The second variable is a good “tag”: it associates to the agent a so-called “offer” good.
The good tag defines a partitioning of the set of agents into nG disjoint subsets of “offerers”,
see below. Each subset is called a sector.

The third variable is a utility profile of the kind introduced in section 3. We focus the
attention on models in which (private) prices, offer goods and utility functions are given and
control the time-discrete dynamics of stocks. This is driven by elementary trades between
pairs of agents belonging to different sectors. To describe such dynamic we need a fourth
variable. This is a sector-to-sector trades upper bound. For any pair j, j′ ∈ [ 0, nG ), it
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defines the maximal number of j′-offerers any j-offerer can trade with. Thus, the state of
the whole system can be represented by five functions

x ∈ N→ R
nG×nA ,

p ∈ R
nG×nA ,

g ∈ [ 0, nG )
nA ,

u ∈ (RnG → R)
nA ,

c ∈ N
nG×nG .

We say that x t i is the stock of the i-th agent at time t; p i , g i and u i the prices, the offer
good and the utility of the i-th agent; c j j′ is the maximal number of agents of the j′-th
sector (of j′-offerers) any agent of the j-th sector (any j-offerer) can trade with.
The function g defines the partitioning of [ 0, nA ) into nG disjoint sectors:

[ 0, nA ) =

j<nG
⋃

j=0

Aj Aj = {k ∈ [ 0, nA ) | (g k) = j} . (10)

If i ∈ Aj , we say that the i-th agent is an offerer of the j-th good or, equivalently, that the
i-th agent belongs to the j-th sector.

4.2 Transition function, flux function

We are interested in dynamic models of exchange economies in which stocks evolve in time
according to a governing equation of the form:

x (t + 1) = x t + f c u g p (x t)ω (11)

As required in section 3, the transition function

y → y + f c u g p y ω

depends, in the governing equation (11), on the present stocks x t, on p, g, u, c, on a random
event ω ∈ Ω but neither on t nor on x (t + 1). We define Ω in section 4.6 below. We say
that (11) is explicit. In contrast, governing equations in which the transition function also
depends on the next state are called implicit.
Moreover, we say that (11) is an explicit single-step governing equation in contrast to explicit
multi-step equations in which the transition function also depends on the values of x at
previous times. The function

f c u g p ∈ R
nG×nA → Ω→ R

nG×nA

is called the flux function and f c u g p y ω is called the flux of y and ω. We say that y is a
stationary stock of (11) if

f c u g p y ω = 0 (12)

∀ω ∈ Ω.
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4.3 Conservative, positivity preserving, stocks value preserving, non-

decreasing fluxes

A flux function f c u g p is called conservative and (11) is called a conservation form for x if

∀y ∈ R
nG×nA , ω ∈ Ω

i<nA
∑

i=0

(f c u g p y ω) i = 0 .

A flux function f c u g p is called positivity preserving if

∀y ∈ R
nG×nA , ω ∈ Ω y ≥ 0 ⇒ y + f c u g p y ω ≥ 0 .

A flux function f c u g is called stocks value preserving if

∀p ∈ R
nG×nA , y ∈ R

nG×nA , ω ∈ Ω y′ = y + f c u g p y ω ⇒ ∀k ∈ [ 0, nA ) (y′ k)·(p k) = (y k)·(p k) .

A flux function f c u g p is called non-own-good non-decreasing if

∀y ∈ R
nG×nA , ω ∈ Ω y′ = y + f c u g p y ω ⇒ ∀i ∈ [ 0, nA ) , j ∈ [ 0, nG ) j 6= g i ⇒ y′ij ≥ y′ij .

Own-good non-increasing flux functions are defined in a similar fashion. In section 4.7
we show that stocks value preserving and non-own-good non-decreasing flux functions play
an important role in studying the converge of stocks of trade-driven models of exchange
economies towards equilibrium stocks.

4.4 Elementary trades, demand, offer

As mentioned in section 3, we are interested in dynamic models of exchange economies of
the form (11) in which the flux is computed by composing elementary trades.
We describe how elementary trades are composed in the next paragraph. Here we focus the
attention on elementary trades. An elementary trade h is a function which models a trade
between two agents belonging to two different sectors. It takes as arguments the system’s
utilities, good tags, prices, stocks and the indexes of the two traders. It computes new stocks:

h u g p ∈ R
nG×nA → [ 0, nA )× [ 0, nA )→ R

nG×nA .

Trades between pairs of agents belonging to different sectors can be modeled according to a
number of different patterns. For instance, one can think of trades based on binding offers
or on price negotiation processes. Here we propose a minimal specification for elementary
trades. We say that any function that fulfills the specification is an elementary trade and we
provide a few examples of such functions.
The most intuitive way to express specifications for h is perhaps to consider the flux

δy = h u g p y (i, i′) − y .

We say that h is an elementary trade if ∀i, i′ ∈ [ 0, nA ) such that g i 6= g i′, the flux δy fulfills:

∀k ∈ [ 0, nA ) k 6= i ∧ k 6= i′ ⇒ δy k = 0 , (13)

∀j ∈ [ 0, nG ) j 6= g i ∧ j 6= g i′ ⇒ δy i j = δy i′ j = 0 , (14)

δy i (g i) = −δy i′ (g i) ≤ 0

δy i (g i′) = −δy i′ (g i′) ≥ 0 ,
(15)
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(−δy i (g i)) (p i (g i)) ≤ (δy i (g i′)) (p i (g i′))

(−δy i′ (g i′)) (p i′ (g i′)) ≤ (δy i′ (g i)) (p i′ (g i)) ,
(16)

− δy i (g i) ≤ y i (g i)

− δy i′ (g i′) ≤ y i′ (g i′) .
(17)

Condition (13) requires an elementary trade between the i-th and the i′-th agents to affect
at most the i-th and the i′-th stocks. Thus, elementary trades model direct, non-mediated
interactions between agents. No third-part is affected by such trades.
Condition (14) and (15) require elementary trades between two agents i and i′ to be exchanges
of their offer goods: the i-th “gives” to the i′-th agent δy i (g i) units of its offer good g i in
exchange for δy i (g i′) units of the offer good g i′ of the i′-th agent. Consequently, δy i (g i)
is required to be negative while δy i (g i′) must be positive. Thus, the flux of elementary
trades is positivity preserving, non-own-good non-decreasing and own-good non-increasing.
Because of (15), the flux of elementary trades is also conservative.
Condition (16) requires elementary trades to be win-win exchanges: for both agents the value
of the amount of good received has to be at least equal to the value of the good given away.
The last condition prevents agents from giving away more offer good than they actually own.
It ensures that the flux of elementary trades is positivity preserving.

h u g p y (i, i′) = h u g p y (i′, i) .

In the following, we give three examples of elementary trades that comply with the specifi-
cation (13)-(17).

Trivial trade. The first example is that of a trivial trade h0. For any index pair i, i′, h0
simply leaves the stocks unchanged:

h0 u g p y (i′, i) = y .

It is easy to see that the flux associated to h0 is zero and fulfills (13)-(17) for any positive y.
Trivially, a trivial trade is symmetric.

Demand-based cooperative elementary trade. The second example of an ele-
mentary trade is based on the notion of demand. A demand function defines, for a given
agent and for a given good, a “target” amount of that good.
The demand function takes as arguments a set of utility functions, the good tags, the prices,
the stocks, an agent index and a good index. It returns a real number:

d u g p y ∈ [ 0, nA )→ [ 0, nG )→ R .

We say that d u g p y i j is the demand of the j-th good of the i-th agent and require d to
be positive. Before discussing further specifications for the demand function, let’s see how
d enters the definition of a demand-based elementary cooperative trade. In such elementary
trade (16.1) is satisfied as equality:

(−δy i (g i)) (p i (g i)) = (δy i (g i′)) (p i (g i′)) . (18)

Let δy i (g i′) 6= 0. Then equations (15), (18) and (16.2) imply

p i′ (g i′)

p i′ (g i)
≤

p i (g i′)

p i (g i)
. (19)
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Conversely, if this inequality is not satisfied, δy i (g i′) has to be equal to zero. Given a
demand function d, equation (18) and the specification (13)-(17) fully determine a demand-
based elementary cooperative trade h1 d:

h1 6 u g p y (i, i′) = y + δy ⇒ δy i (g i′) = δ′ ∧ −δy i (g i) = δ (20)

where

(δ′, δ) =

{

0 if p i (g i′)
p i (g i) < p i′ (g i′)

p i′ (g i)

(µ2, ν2) otherwise
(21)

(µ0, ν0) = (∆, Ω) (22)

(µ1, ν1) = if µ0 ≤ y i′ (g i′) then (µ0, ν0) else

(

y i′ (g i′), y i′ (g i′)
p i (g i′)

p i (g i)

)

(23)

(µ2, ν2) = if ν1 ≤ y i (g i)then (µ1, ν1) else

(

ν1
p i (g i)

p i (g i′)
, ν1

)

(24)

∆ = d u g p y i (g i′) (25)

Ω = ∆
p i (g i′)

p i (g i)
(26)

∆′ = d u g p y i′ (g i) (27)

Ω′ = ∆′ p i′ (g i)

p i′ (g i′)
. (28)

(29)

In the above equations, ∆, Ω, ∆′ and Ω′ are the demand and the offer of the i-th and of
the i′-th agents, respectively. In (27) and (29), offers are computed from demands to ensure
that, for each agent, the value of the own-good given away equals the value of good received,
see equation (18).

Demand and offer of the i-th agent are upper bounds for the amounts of the (g i′)-th and
of the (g i)-th goods exchanged in a trade. In particular

d u g p y i (g i′) = 0 ⇒ h1 d u g p y (i, i′) = y (30)

The “default” exchange (∆, Ω) is limited by two budget constraints. These are expressed
in (24)-(25) through if-then-else rules. These rules guarantee that the fluxes of the (g i′)-th
and of the (g i)-th goods do not exceed the stocks of own-good of the i′-th and of the i-th
agent, respectively.

The fluxes of h1 in the (g i′)-th and in the (g i)-th good for the i′-th agent are determined
by (15):

δy i′ (g i′) = −δy i (g i′)

δy i′ (g i) = −δy i (g i) .
(31)

Because of (13) and (14), the fluxes of h1 in goods different from the (g i′)-th and from the
(g i)-th are zero for all agents:

∀k ∈ [ 0, nA ) ∀j ∈ [ 0, nG ) j 6= g i ∧ j 6= g i′, δy k j = 0 , (32)

∀k ∈ [ 0, nA ) k 6= i ∧ k 6= i′ δy k = 0 . (33)

Demand-based cooperative elementary trades are not symmetric. Because of (18), demand-
based cooperative elementary trades are stock value preserving if the prices are same for all
agents.
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Demand-based limited cooperative elementary trade. In the elementary trade
h1 presented above there is nothing that prevents the i′-th agent from receiving an amount
of the (g i)-th good which exceeds its demand ∆′ or from giving away more than its offer Ω′.
Notice that this can never happen to the i-th agent because of equation (30).

If demand and offer are designed to move one agent’s stocks toward some target, this
might lead to exchanges which overshoot or undershoot the target of the i′-th agent. This
can be avoided by limiting the flux by taking into account demand and offer of the i′-th
agent. We call the limited scheme h2. It is defined by

(δ′, δ) =

{

0 if p i (g i′)
p i (g i) < p i′ (g i′)

p i′ (g i)

(µ4, ν4) otherwise
(34)

(µ3, ν3) = if µ2 ≤ Ω′ then (µ2, ν2) else

(

Ω′, Ω′ p i (g i′)

p i (g i)

)

(35)

(µ4, ν4) = if ν3 ≤ ∆′ then (µ3, ν3) else

(

∆′ p i (g i)

p i (g i′)
, ∆′

)

(36)

(37)

where µ2, ν2, ∆′ and Ω′ are computed as in the demand-based cooperative elementary trade
h1, see equations (25), (28) and (29). As for h1 one has

d u g p y i (g i′) = 0 ⇒ h2 d u g p y (i, i′) = y (38)

Demand functions The last two examples of elementary trades show that demand-
based cooperative elementary trades are essentially defined in terms of the demand function
d. It is therefore important to provide minimal specifications for the demand function. The
first one is, as already mentioned:

d u g p y i j ≥ 0 .

This condition is necessary for h1 to be an elementary trade (to fulfill (13)-(17)), in particular,
for its flux to be positivity preserving.
In the next paragraph we discuss how elementary trades and, in particular, demand-based
cooperative elementary trades, can be combined to build models of exchange economies in
which stocks evolve in time upon given fixed prices. As mentioned in section 3.2, we are
interested in the particular class of models in which stocks which are in equilibrium with the
initial stocks are stationary.
Remember that the flux of the transition function has to be zero at stationary states, see
equation 12. A sufficient condition for the flux of demand-based cooperative elementary
trades to be zero at equilibrium is that the demand function is zero (at equilibrium). There-
fore, a minimal specification for d is

y i ∈ argmax
z·(p i)≤(y i)·(p i)

u i z

⇒

d u g p y i = 0 .

(39)

For the case in which argmax contains exactly one element, the demand function

d u g p y i j =











0 if j = g i

max 0

((

argmax
z·(p i)≤(y i)·(p i)

u i z

)

j − y i j

)

otherwise
(40)
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naturally fulfill the specification above. We call (40) the natural demand function.

4.5 Elementary trade based transition function

The most straightforward way of combining two or more elementary trades in a transition
function is to apply them in sequence. Sequentializing elementary trades requires a trade
schedule. This is a list of agent index pairs ts such that

elem (i, i′) ts ⇒ g i 6= g i′ . (41)

Lists are recursively defined data types [3]. We denote an empty list with the symbol []. A
list consisting of an a ∈ A put on the top of a list as ∈ ListA is denoted by (a : as). We say
that as!!k is the k-th element of as. In (41), elem is the boolean function

elem ∈ A→ ListA→ Bool

elem a as =

{

true if ∃ k ∈ N such that as!!k = a

false otherwise .

Given an elementary trade h u g p ∈ (RnG)
nA → [ 0, nA ) × [ 0, nA ) → (RnG)

nA and a trade
schedule ts ∈ List [ 0, nA )× [ 0, nA ), the transition function that sequentializes h u g p on ts
is

tr ∈ R
nG×nA → R

nG×nA

tr y = fold (h u g p) y ts .
(42)

Like elem, fold is a polymorphic function. Its signature depends on two parameters X and
Y :

fold ∈ (X → Y → X)→ X → List Y → X .

Like many functions that operate with lists, see [3], fold is defined recursively by pattern
matching the case in which the list argument is empty

fold f x [] = x

and the case in which the list argument consists of a y ∈ Y on the top of a (possibly empty)
list ys ∈ List Y :

fold f x (y : ys) = f (fold f x ys) y .

As an example, consider the transition function obtained by folding g = h1 u g p on the trade
schedule [(0, 1), (2, 1), (0, 2)]:

fold g y [(0, 1), (2, 1), (0, 2)]

=

fold g y ((0, 1) : [(2, 1), (0, 2)])

=

g (fold g y ((2, 1) : [(0, 2)])) (0, 1)

=

g (g (fold g y ((0, 2) : [])) (2, 1)) (0, 1)

=

g (g (g (fold g y []) (0, 2)) (2, 1)) (0, 1)

=

g (g (g y (0, 2)) (2, 1)) (0, 1) .
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Notice that the trade schedule is “executed” from the right to the left. First, one accounts
for the effect of the elementary trade between the 0-th and the second agent on y. This
results in a new set of stocks, say y′. Then, the elementary trade between the second and
the first agent yields new stocks y′′. Finally, the interaction between the 0-th and the first
agent completes the transition.
For this simple example we can in fact rewrite the computation in a more explicit form as:

fold g y [(0, 1), (2, 1), (0, 2)] = y′′′

where :

y′ = g y (0, 2)

y′′ = g y′ (2, 1)

y′′′ = g y′′ (0, 1) .

We conclude this paragraph with a number of remarks. First, elementary trade based transi-
tion functions inherit the properties of elementary trades: their flux is conservative, positivity
preserving, own-good non-increasing and non-own-good non-decreasing. The flux of tran-
sition functions based on stocks value preserving elementary trades is itself stocks value
preserving.
Second, elementary trade based transition functions depend on the sequence of interac-
tions defined by the trade schedule. The trade schedule signals the presence of an hidden
time-scale. As the hidden (short) time advances, new agent pairs interact according to the
schedule. During a time step an agent is either idle or engaged in an elementary trade with
exactly another agent. There is no notion of simultaneous trades here. Thus, the 0-th agent
of the example above trades both with the first and with the second agent. However, it does
so in a well-defined sequence. It first trades with the second agent; then, after the second
agent has traded with the first, it trades with the first agent.
Third, a trade schedule can be seen as a relation between agents belonging to different sectors
together with a time plan. The relation defines a network of elementary interactions. The
time plan their sequence. Depending on the economic system to be modeled, different kind
of networks may be more or less appropriate. In social networks, for instance, the number
of agents a given agent interacts with is bounded from above independently of the sector
sizes. We do not consider the problem of defining suitable networks in this paper. In the
next paragraph, however, we discuss how to build a random schedule on the basis of given
random events an of a sector-to-sector trades upper bound c ∈ (NnG)

nG . This is the kind of
schedule used in the dynamic model of exchange economies presented in sections 4.7 and 5.

4.6 Random events, random schedule

A simple yet general way of construction a random trade schedule for the transition function
tr from equation (42) is in terms of a random event ω ∈ Ω, see equation (11).

In this framework, sector or agent specific trading preferences can only be modeled via
the probability distributions associated to ω. We do not discuss the issue of modeling sector
or agent specific preferences here. Instead, we show how to compute a trading schedule ts
from a given random event ω and a given sector-to-sector trades upper bound c. We follow
an algorithm originally proposed in [8].

In this context, ω is a tuple of random events: ω = (γ, α, η). The first element of ω is a
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random inverse numbering2 of [ 0, nG ):

γ ∈ [ 0, nG )→ [ 0, nG ) .

There are nG! such numberings. The second element of ω is a vector of random inverse
numbering, one for each sector:

α ∈ [ 0, nG )→ [ 0, nA )→ [ 0, nA ) .

The j-th component of α is an inverse numberings of the j-th sector Aj . Therefore α j are
partial functions. They fulfill:

∀j ∈ [ 0, nG ) dom(α j) =
[

0, nAj

)

∀j ∈ [ 0, nG ) ran (α j) = Aj

There are
∏j<nG

j=0 nAj
! such numberings. The third element of the tuple ω is, for each pair

of sector indexes j and j′ and for each offerer in Aj , a random draw of c j j′ offerers in Aj′ :

η ∈ [ 0, nG )→ [ 0, nG )→ [ 0, nA )→ N→ [ 0, nA ) .

It has to fulfill the following specification:

∀j, j′ ∈ [ 0, nG ) dom (η j j′) = Aj ,

∀j, j′ ∈ [ 0, nG ) ran (η j j′) = [ 0, (c j j′) )→ Aj′ .

There are
∏j<nG

j=0

∏j′<nG

j′=0 n
(c j j′)
Aj′

!. Thus, Ω is a finite space of events of size

|Ω| = nG!

j<nG
∏

j=0

nAj
!

j′<nG
∏

j′=0

j′′<nG
∏

j′′=0

n
(c j′ j′′)
Aj′′

!

Given ω = (γ, α, η) and c ∈ (NnG)
nG , a random trade schedule ts can be computed as follows:

ts = [ (α (γ j) i, η (γ j) (γ j′) (α (γ j) i) k) | j ← [ 0, nG ) ,

j′ ← [ 0, nG ) ,

i←
[

0, nA(γ j)

)

,

k← [ 0, c (γ j) (γ j′) ) ]

The equation defines ts through a list comprehension. The expression a← as is read “for a
drawn from as”. It represents the action of iterating over the elements of as. Thus, ts is the
list of pairs (α (γ j) i, η (γ j) (γ j′) (α (γ j) i) k) obtained by drawing j and j′ from [ 0, nG ), i

from [ 0, nA(γ j)
) and k from [ 0, c (γ j) (γ j′) ). It consists of

∑j<nG

j=0 (nA(γ j)

∑j′<nG

j′=0 c (γ j) (γ j′))
pairs.

4.7 Trade-driven stocks dynamics

In this section we study the dynamics of stocks under constant prices that is, prices which
are the same for all agents: p i = p0. We are interested in sequences of stocks as defined by
the following iteration:

(s (t + 1), ts (t + 1)) = randomize (s t, c)

y (t + 1) = fold (h u g p) (y t) (ts (t + 1))
(43)

2a numbering of a finite set A is a bijective function in A → [ 0, |A| ). It associates to each element of A exactly
one number between 0 and |A| − 1. There are |A|! such functions.
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starting from an initial seed s 0 = s0 and from initial stocks y 0 = y0. We do not discuss here
the notion of a seed and the implementation of randomize and we assume that ts (t + 1) is
computed from s t and from the sector-to-sector trades upper bound c in terms of uniformly
distributed random inverse numberings as discussed in the previous paragraph. Instead, we
focus on the dynamics of stocks. We start the iteration with

y0 i j =

{

1+j
|Aj |

if j = g i

0 otherwise
(44)

where |Aj | is the number of agents belonging to the j-th sector, see equation (10). Thus, the
total quantity of the j-th good in the system is 1 + j.

For studying the dynamics of stocks governed by (43) when h is a demand-based elementary
trade, e.g., h = h1 d or h = h2 d, it is useful to introduce the notion of total demand :

td d u g p ∈ R
nG×nA → R

td d u g p z =

i<nA
∑

i=0

j<nG
∑

j=0

d u g p z i j .
(45)

For these transition functions, the total demand td d u g p is an upper bound for the total
amount of (non-own) goods which can be exchanged during a transition.

If the utility profile u and the initial stocks y0 support, for given prices p0, unique stocks
ye, the natural demand function (40) guarantees that the transition function tr of equation
(42) is total demand non-increasing, see appendix A:

z′ = tr z ⇒ td d u g p z′ ≤ td d u g p z . (46)

This implies that the iteration (43) is total demand non-increasing:

td d u g p y (t + 1) ≤ td d u g p y t . (47)

Under these conditions, one would like to ensure that, if the total demand of y t converges
towards zero, y t is stationary and equal to ye.

The first property is guaranteed by positivity of demands and, for h = h1 d or h = h2 d,
by equations (30), (38), see appendix B. A sufficient condition for y t to be in equilibrium
if its total demand is zero is that the second argument of max in equation (40) is positive.
This is the case if the demand based elementary trade h is limited i.e. h = h2 d. Limiting
the flux between any two agents by demand and offer of both agent is also necessary for the
iteration (43) to converge.

We use this property to setup two experiments. These are designed to validate our imple-
mentation of (43) and to understand how the dynamics of stocks for fixed constant prices
depends on the number of agents and on the sector-to-sector trades upper bound.

In both experiments, the number of goods is equal to 3 and the utility function is the
Scarf utility function with utility weights w equal to the total initial stocks:

w j = 1 + j (48)

Under these conditions, any vector of prices p0 defines equilibrium stocks

ye i =
(y0 i) · p0

w · p0
w (49)
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and the total utility at equilibrium is

i<nA
∑

i=0

u i ye = 1 , (50)

see appendix C. We consider random prices in ( 0, 1 ]. In the first experiment we fix the
number of agents per sector to 1000 and let the sector-to-sector trades upper bound c vary.
In the limited case h = h2 d, we expect the total demand to converge towards zero and the
total utility to converge towards one as the stocks converge towards the equilibrium stocks
(49). The results shown in figure 1 do not contradict this hypothesis.
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Figure 1: Transition function based on limited cooperative elementary trade: total demand
(left) and total utility (right) versus number of iterations for sector-to-sector trades upper bounds
of 1, 10, 100 and 1000.

In the unlimited case h = h1 d, we expect the iteration to converge towards stationary, sub-
optimal stocks3. The results shown in figure 2 are not in contradiction with such expectation.
In this experiment the utility profile u and the initial stocks y0 allow unique equilibrium
stocks ye for any vector of (strictly positive) prices p0. Under these conditions time history
of the total demand (on the left of the figures above) should be essentially the same as the
time history of the distance





i<nA
∑

i=0

j<nG
∑

j=0

(y t i j − ye i j)2





1
2

between the actual stocks y t and the equilibrium stocks ye. Figure 3 shows that this is the
case.

In the second experiment we consider the number of iterations needed for the total demand
to be less than 10−6. First we fix the ratio between the sector-to-sector trades upper bound
and the number of agents per sector to 0.05 and let the number of agents vary. Then we fix
the sector-to-sector trades upper bound to 10 and vary the number of agents. The results
are reported in figure 4.

3remember that, in an unlimited trade between any two agents of indexes i and i′, nothing prevents the
i′-th agent from receiving an amount of the (g i)-th good which exceeds its demand or from giving away an
amount of the (g i′)-th good larger than its offer. This leads to sub-optimal allocations that cannot be reversed
in subsequent trades. This is because elementary trades are non-decreasing (in the quantities of non-own-goods)
and non-increasing (in the quantity of own-good).
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Figure 2: Transition function based on unlimited cooperative elementary trade: total demand
(left) and total utility (right) versus number of iterations for sector-to-sector trades upper bounds
of 1, 10, 100 and 1000.
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Figure 3: Transition function based on cooperative elementary trade: residuum versus number
of iterations for sector-to-sector trades upper bounds of 1, 10, 100 and 1000; limited (left) and
unlimited (right) case.
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Figure 4: Elementary trade based transition function, number of iterations needed for conver-
gence versus number of agents: constant ratio between sector-to-sector trades upper bound and
number of agents per sector (equal to 0.05, left) and constant sector-to-sector trades upper
bound (equal to 10, right).

TODO: discuss the adequacy of the monotonicity conditions and introduce the

next section

5 The dynamics of prices driven by stocks utilities

6 Conclusions, outlook

A

Because tr is obtained by folding demand-based cooperative trades and p is constant, its flux
is stocks value preserving. This means that

z′ = tr z ⇒ ∀i ∈ [ 0, nA ) (z′ i) · (p i) = (z i ) · (p i) .

For the same reason, the flux of tr is also non-own-good non-decreasing:

z′ = tr z ⇒ ∀i ∈ [ 0, nA ) , j ∈ [ 0, nG ) , j 6= g i z′ i j ≥ z i j .

These two equations together with the definition of natural demand (40) imply

z′ = tr z ⇒ ∀i ∈ [ 0, nA ) , j ∈ [ 0, nG ) , j 6= g i d u g p z′ i j ≤ d u g p z i j

and, by definition of total demand (45), (47).
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B

One has:

td d u g p (y t) = 0

= {equation (45)}

i<nA
∑

i=0

j<nG
∑

j=0

d u g p (y t) i j = 0

= {positivity of d}

∀i ∈ [ 0, nA ) , ∀j ∈ [ 0, nG ) , d u g p (y t) i j = 0

= {take j = g i′}

∀i ∈ [ 0, nA ) , ∀i′ ∈ [ 0, nA ) , d u g p (y t) i (g i′) = 0

= {equations (30), (38)}

∀i ∈ [ 0, nA ) , ∀i′ ∈ [ 0, nA ) , h d u g p (y t) (i, i′) = y t

= {equation (43)}

y (t + 1) = y t

C

i<nA
∑

i=0

u i ye

= {equation (7)}

i<nA
∑

i=0

min
j∈[ 0,nG )

ye i j

w j

= {equation (49)}

i<nA
∑

i=0

min
j∈[ 0,nG )

(y0 i) · p0

w · p0
(w j)

1

w j

= {equation (44)}

i<nA
∑

i=0

1

w · p0

1 + g i

|Ag i|
(p0 (g i))

= {counting}

1

w · p0

j<nG
∑

j=0

(1 + j)(p0 j)

= {w j = 1 + j (hypothesis)}

1
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